Physics Courseware Quantum Mechanics

Angular momentum

Problem 1.- A particle is prepared in the state: $\psi=\frac{2 Y_{2}^{1}+Y_{3}^{2}+Y_{3}^{0}}{\sqrt{6}}$. An experiment to measure angular momentum yields $l=2$. If the magnetic quantum number is measured immediately after, what value do you expect to measure?

Solution: When the angular momentum is measured the wavefunction will "collapse" to Y_{2}^{1}, which has magnetic quantum number $\mathbf{m}=\mathbf{1}$.

Problem 1a.- A particle is prepared in the state: $\psi=\frac{Y_{2}^{1}+Y_{3}^{2}+Y_{4}^{0}}{\sqrt{3}}$. Then, an experiment to measure angular momentum yields $l=4$. If the magnetic quantum number is measured immediately after, what value do you expect to measure?

Solution: When the angular momentum is measured the wavefunction will "collapse" to Y_{4}^{0}, which has magnetic quantum number $\mathbf{m}=\mathbf{0}$.

Problem 2.- What are the places where the probability of finding the electron of the hydrogen atom with quantum numbers $\mathrm{n}=3, \mathrm{l}=0$ and $\mathrm{m}=0$ vanishes?

Solution: The angular wavefunction with $\mathrm{l}=0$ and $\mathrm{m}=0$ is just a constant, so the only places where the probability vanishes are where the radial wavefunction is zero.
This happens when $1-\frac{2}{3} \frac{r}{a}+\frac{2}{27}\left(\frac{r}{a}\right)^{2}=0$,
Which has two solutions: $\mathbf{r = 7 . 1 a}$ and $\mathbf{r = 1 . 9 a}$

Problem 3.- What is the angular eigenfunction that has L^{2} eigenvalue of $12 \hbar^{2}$ and L_{z} eigenvalue of $-2 \hbar$?

Solution: If L^{2} is $12 \hbar^{2}$ it means that $l=3$. The fact that L_{z} is $-2 \hbar$ means that $\mathrm{m}=-2$, so the angular wavefunction is Y_{3}^{-2}

