
Optics

Dispersion

Problem 1.- Use the lens-maker equation to calculate the focal length of a thin lens for blue light and red light (n_{blue} =1.535 n_{red} =1.525)

Consider a biconvex lens with identical spherical surfaces of 20cm radius.

Solution:

For blue:
$$f = \frac{1}{(n-1)} \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{1}{(1.535 - 1)} \frac{1}{\frac{1}{20} + \frac{1}{20}} = 18.69 \text{ cm}$$

For red:
$$f = \frac{1}{(n-1)} \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{1}{(1.525 - 1)} \frac{1}{\frac{1}{20} + \frac{1}{20}} = 19.05 \text{ cm}$$