Optics

EM waves

Problem 1.- Describe the following electromagnetic waves in terms of direction of propagation and polarization:
[The functions given are the electric field vectors]
a) $\vec{E}=E_{o} \hat{z} \cos (\omega t+k y)$
b) $\vec{E}=\hat{x} \cos (\omega t-k z)+\hat{y} \cos (\omega t-k z)$
c) $\vec{E}=\hat{y} E_{o} \cos (\omega t) \cos (k x)$

Solution:

a) $\vec{E}=E_{o} \hat{z} \cos (\omega t+k y)$

It's a wave propagating in the negative y direction and its plane polarized.
b) $\vec{E}=\hat{x} \cos (\omega t-k z)+\hat{y} \cos (\omega t-k z)$

It's a wave propagating in the positive z direction and its plane polarized.
c) $\vec{E}=\hat{y} E_{o} \cos (\omega t) \cos (k x)$

Two waves propagating in the positive and negative x direction plane polarized.
Problem 2.- Consider the wave described by:
$\vec{E}=3 \hat{x} \cos (\omega t-k z)+3 \hat{y} \cos (\omega t-k z)$
Indicate the state of polarization after going through a $1 / 2$ wave plate with the fast axis in the x direction.

Solution: After going through the $1 / 2$ wave plate the new field will be:
$\vec{E}=3 \hat{x} \cos (\omega t-k z+\pi)+3 \hat{y} \cos (\omega t-k z)=-3 \hat{x} \cos (\omega t-k z)+3 \hat{y} \cos (\omega t-k z)$
So it is still a plane polarized wave, but the x-component of the field changed sign, so this is equivalent to a rotation of 90°.

Problem 3.- Which of the following equations corresponds to the electric field of a plane polarized electromagnetic wave moving in the negative z direction?
(A) $\vec{E}=E_{o} \hat{x} \cos (\omega t-k z)+E_{o} \hat{y} \cos (\omega t-k z)$
(B) $\vec{E}=E_{o} \hat{x} \cos (\omega t-k z)+E_{o} \hat{y} \sin (\omega t-k z)$
(C) $\vec{E}=E_{o} \hat{x} \cos (\omega t+k z)+E_{o} \hat{y} \cos (\omega t+k z)$
(D) $\vec{E}=E_{o} \hat{x} \cos (\omega t+k z)+E_{o} \hat{y} \sin (\omega t+k z)$
(E) $\vec{E}=E_{o} \hat{x} \cos (\omega t+k z)+E_{o} \hat{y} \cos (\omega t+k z-\pi / 2)$

Solution:

We identify \mathbf{C}
Problem 4.- An electromagnetic wave in vacuum has an electric field described by the equation $\vec{E}=E_{o} \hat{x} \cos (\omega t-k z)$

Indicate:
Direction of propagation of the wave:
Direction of the magnetic field:
What kind of polarization it is:

Solution:

Direction of propagation of the wave: Positive z-axis
Direction of the magnetic field: \mathbf{y}-axis
What kind of polarization it is: Plane
Problem 5.- Identify the direction of propagation of the following waves and what kind of polarization they represent.
a) $\overrightarrow{\mathrm{E}}=\hat{\mathrm{x}} \mathrm{E}_{\mathrm{o}} \cos (\omega \mathrm{t}+\mathrm{ky})+\mathrm{E}_{\mathrm{o}} \hat{z} \cos (\omega \mathrm{t}+\mathrm{ky})$
b) $\overrightarrow{\mathrm{E}}=\hat{\mathrm{x}} \mathrm{E}_{\mathrm{o}} \cos (\omega \mathrm{t}-\mathrm{kz})+\hat{\mathrm{y}}\left(\frac{\mathrm{E}_{\mathrm{o}}}{2}\right) \cos (\omega \mathrm{t}-\mathrm{kz})$
c) $\overrightarrow{\mathrm{E}}=\hat{\mathrm{x}} \mathrm{E}_{\mathrm{o}} \cos (\omega \mathrm{t}-\mathrm{ky})+\hat{\mathrm{z}} \mathrm{E}_{\mathrm{o}} \sin (\omega \mathrm{t}-\mathrm{ky})$
d) $\overrightarrow{\mathrm{E}}=\hat{\mathrm{x}} \mathrm{E}_{\mathrm{o}} \cos (\omega \mathrm{t}) \cos (\mathrm{kz})$
c) $\overrightarrow{\mathrm{E}}=\hat{\mathrm{x}} \mathrm{E}_{\mathrm{o}} \cos \left(\omega \mathrm{t}-\frac{\mathrm{ky}}{\sqrt{2}}+\frac{\mathrm{kz}}{\sqrt{2}}\right)$

Solution:

a) $\overrightarrow{\mathrm{E}}=\hat{\mathrm{x}} \mathrm{E}_{\mathrm{o}} \cos (\omega \mathrm{t}+\mathrm{ky})+\mathrm{E}_{\mathrm{o}} \hat{\mathrm{z}} \cos (\omega \mathrm{t}+\mathrm{ky})$

This wave travels in the negative y direction and it is plane polarized (P)
b) $\overrightarrow{\mathrm{E}}=\hat{\mathrm{x}} \mathrm{E}_{\mathrm{o}} \cos (\omega \mathrm{t}-\mathrm{kz})+\hat{\mathrm{y}}\left(\frac{\mathrm{E}_{\mathrm{o}}}{2}\right) \cos (\omega \mathrm{t}-\mathrm{kz})$

This wave travels in the positive z direction and it is plane polarized (P)
c) $\overrightarrow{\mathrm{E}}=\hat{\mathrm{x}} \mathrm{E}_{\mathrm{o}} \cos (\omega \mathrm{t}-\mathrm{ky})+\hat{\mathrm{z}} \mathrm{E}_{\mathrm{o}} \sin (\omega \mathrm{t}-\mathrm{ky})$

This wave travels in the positive y direction and it is circularly polarized (P)
d) $\overrightarrow{\mathrm{E}}=\hat{\mathrm{x}} \mathrm{E}_{\mathrm{o}} \cos (\omega \mathrm{t}) \cos (\mathrm{kz})$

Notice that: $\overrightarrow{\mathrm{E}}=\hat{\mathrm{x}} \mathrm{E}_{\mathrm{o}} \cos (\omega \mathrm{t}) \cos (\mathrm{kz})=\hat{\mathrm{x}} \frac{\mathrm{E}_{\mathrm{o}}}{2}[\cos (\omega \mathrm{t}+\mathrm{kz})+\cos (\omega \mathrm{t}-\mathrm{kz})]$

This is a standing wave, which can be represented by two plane polarized waves traveling in opposite directions along the z axis.
c) $\overrightarrow{\mathrm{E}}=\hat{\mathrm{x}} \mathrm{E}_{\mathrm{o}} \cos \left(\omega \mathrm{t}-\frac{\mathrm{ky}}{\sqrt{2}}+\frac{\mathrm{kz}}{\sqrt{2}}\right)$

The polarization is linear because the electric field vector always points in the x-direction.
The wave travels in a direction that bisects the angle between the positive y and negative z directions.

Problem 6.- Consider the wave described by:
$\vec{E}=\hat{x}\left(\frac{4}{5}\right) \cos (\omega t-k z)+\hat{y}\left(\frac{3}{5}\right) \cos \left(\omega t-k z-30^{\circ}\right)$
Show with a graph how the electric field oscillates in the $x-y$ plane.
Identify from the graph (or mathematically) the angle between the major axis of the ellipse and the x -axis.
[Suggestion: instead of manually graphing the vectors on graph paper, use a spreadsheet program to do it for you and print the graph]

Solution: The electric field wave described by:
$\vec{E}=\hat{x}\left(\frac{4}{5}\right) \cos (\omega t-k z)+\hat{y}\left(\frac{3}{5}\right) \cos \left(\omega t-k z-30^{\circ}\right)$
is shown in the graph below:

It is a case of elliptical polarization, with the ellipse rotated at an angle of 35.7°
This can also be calculated mathematically instead of graphically. We can use the equation:

$$
\alpha=\frac{1}{2} \tan ^{-1}\left(\frac{2 E_{x} E_{y} \cos \phi}{E_{x}^{2}-E_{y}^{2}}\right)=\frac{1}{2} \tan ^{-1}\left(\frac{2(4 / 5)(3 / 5) \cos 30^{\circ}}{(4 / 5)^{2}-(3 / 5)^{2}}\right)=35.7^{\circ}
$$

Problem 7.- Consider the wave described by:
$\overrightarrow{\mathrm{E}}=\hat{\mathrm{x}} \cos (\omega \mathrm{t}-\mathrm{kz})+2 \hat{\mathrm{y}} \cos (\omega \mathrm{t}-\mathrm{kz}-\pi / 2)$
Show with graph how the electric field oscillates in the $x-y$ plane $(z=0)$. Indicate the direction of oscillation (clockwise or anticlockwise).

Solution: In the graph below anticlockwise rotation of the electric field:

