Optics

Fiber Optics

Problem 1.- A model of an optical fiber is shown in the figure below. The optical fiber has an index of refraction n_c , and is surrounded by cladding with index of refraction n_c , which is smaller that n_f , but larger than 1.

What is the maximum angle of incidence Θ that will result in the light staying in the optical fiber?

A)
$$\theta_{\text{max}} = \sin^{-1} \left(\sqrt{n_f^2 - n_c^2} \right)$$

B)
$$\theta_{\text{max}} = \sin^{-1} \left(\sqrt{n_f^2 + n_c^2} \right)$$

C)
$$\theta_{\text{max}} = \sin^{-1}\left(\sqrt{n_c^2 - n_f^2}\right)$$

D)
$$\theta_{\text{max}} = \cos^{-1} \left(\sqrt{n_f^2 - n_c^2} \right)$$

E)
$$\theta_{\text{max}} = \cos^{-1} \left(\sqrt{n_f^2 + n_c^2} \right)$$

Problem 2.- A model of an optical fiber is shown in the figure below. The optical fiber has an index of refraction $n_f = 1.52$ and is surrounded by cladding with index of refraction $n_c = 1.3$ What is the maximum angle of incidence Θ that will result in the light staying in the optical fiber?

A)
$$\theta_{\text{max}} = 45^{\circ}$$

B)
$$\theta_{\text{max}} = 48^{\circ}$$

C)
$$\theta_{\text{max}} = 50^{\circ}$$

D)
$$\theta_{\text{max}} = 52^{\circ}$$

E)
$$\theta_{\text{max}} = 54^{\circ}$$

Solution: The maximum angle is

$$\theta_{\text{max}} = \sin^{-1}\left(\sqrt{n_f^2 - n_c^2}\right) = \sin^{-1}\left(\sqrt{1.52^2 - 1.3^2}\right) = 52^{\circ} \text{ Answer: } \mathbf{D}$$