Optics

Fiber Optics

Problem 1.- A model of an optical fiber is shown in the figure below. The optical fiber has an index of refraction n_{f}, and is surrounded by cladding with index of refraction n_{c}, which is smaller that n_{f}, but larger than 1 .
What is the maximum angle of incidence Θ that will result in the light staying in the optical fiber?

A) $\theta_{\text {max }}=\sin ^{-1}\left(\sqrt{n_{f}{ }^{2}-n_{c}{ }^{2}}\right)$
B) $\theta_{\text {max }}=\sin ^{-1}\left(\sqrt{n_{f}{ }^{2}+n_{c}{ }^{2}}\right)$
C) $\theta_{\text {max }}=\sin ^{-1}\left(\sqrt{n_{c}{ }^{2}-n_{f}{ }^{2}}\right)$
D) $\theta_{\text {max }}=\cos ^{-1}\left(\sqrt{n_{f}{ }^{2}-n_{c}{ }^{2}}\right)$
E) $\theta_{\text {max }}=\cos ^{-1}\left(\sqrt{n_{f}{ }^{2}+n_{c}{ }^{2}}\right)$

Problem 2.- A model of an optical fiber is shown in the figure below. The optical fiber has an index of refraction $n_{f}=1.52$ and is surrounded by cladding with index of refraction $n_{c}=1.3$
What is the maximum angle of incidence Θ that will result in the light staying in the optical fiber?

A) $\theta_{\text {max }}=45^{\circ}$
B) $\theta_{\text {max }}=48^{\circ}$
C) $\theta_{\text {max }}=50^{\circ}$
D) $\theta_{\text {max }}=52^{\circ}$
E) $\theta_{\text {max }}=54^{\circ}$

Solution: The maximum angle is
$\theta_{\max }=\sin ^{-1}\left(\sqrt{n_{f}{ }^{2}-n_{c}{ }^{2}}\right)=\sin ^{-1}\left(\sqrt{1.52^{2}-1.3^{2}}\right)=52^{\circ}$ Answer: D

