Optics

Kerr effect

Problem 1.- Suppose a Kerr cell needs 7,100 volts to produce a retardation of 90° (behaving as a quarter wave plate). How much voltage do you need if you want a retardation of 180° ?

Solution: Since the rotation is proportional to the voltage squared if we want to increase the rotation by a factor of 2 the voltage should increase by a factor of $\sqrt{2}$, so it should be $\mathbf{1 0 , 0 0 0}$ volts

Problem 2.- Calculate the voltage necessary to produce a rotation of 90° when light from a He Ne laser ($\lambda=632 \mathrm{~nm}$) goes through a Pockels cell made of lithium niobate. Assume the plane of polarization of the laser makes 45° with respect to the fast axis.
$\mathrm{r}=3.05 \times 10^{-12} \mathrm{~m} / \mathrm{V}$
$\mathrm{n}=2.18$
Solution: To produce a rotation of 90° we need to make the Pockels cell to behave as a half wave plate, so:

$$
\frac{\lambda}{2}=r n^{3} V \rightarrow V=\frac{\lambda}{2 r n^{3}}=\frac{632 \mathrm{~nm}}{2\left(3.05 \times 10^{-12} \mathrm{~m} / V\right) 2.18^{3}}=\mathbf{1 0 , 0 0 0} \mathbf{~ v o l t}
$$

