Optics

Photons

Problem 1.- A YAG laser emits a pulse of infrared radiation that is converted to green light by a frequency doubler. The resulting pulse lasts $t=9 \mathrm{~ns}$, has energy of 120 mJ and wavelength of 532 nm.
Calculate:
a) The number of green photons emitted.
b) The total linear momentum of the pulse
c) The length of the pulse (in meters)
d) The frequency of the light.

Solution:

The number of green photons emitted. The total energy divided by the energy of one photon give us the number of photons:

$$
\mathrm{N}=\frac{\text { energy }}{\left(\frac{\mathrm{hc}}{\lambda}\right)}=\frac{120 \times 10^{-3} \mathrm{~J}}{\left(\frac{\left(6.62 \times 10^{-34} \mathrm{Js}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{532 \times 10^{-9} \mathrm{~m}}\right)}=\mathbf{3 . 2 1} \times 10^{17}
$$

The total momentum of the pulse: Notice that for photons energy=pc, so the momentum is the energy divided by the speed of light:
$\mathrm{p}=\frac{\text { energy }}{\mathrm{c}}=\frac{120 \times 10^{-3} \mathrm{~J}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=\mathbf{4} \times \mathbf{1 0}^{-10} \mathbf{~ k g ~ m} / \mathrm{s}$
The length of the pulse: Using the speed of light and the time of the pulse:

$$
\text { length }=\mathrm{ct}=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(9 \times 10^{-9} \mathrm{~s}\right)=\mathbf{2 . 7} \mathbf{~ m}
$$

The frequency of the light: The fundamental equation of waves. What is new? c over lambda.
$\mathrm{f}=\frac{\mathrm{c}}{\lambda}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{532 \times 10^{-9} \mathrm{~m}}=\mathbf{5 . 6 \times 1 0 ^ { 1 4 }} \mathbf{H z}$
Problem 2.- Approximate number of photons in a 10fs pulse of 600 nm wavelength light from a 1 kW peak power laser.
(A) 3×10^{3}
(B) 3×10^{7}
(C) 3×10^{11}
(D) 3×10^{15}
(E) $\quad 3 \times 10^{18}$

Solution: The total energy is: $E=$ power \times time and the energy of 1 photon is $E_{1}=h c / \lambda$, so the number of photons will be:
$N=\frac{\text { power } \times \text { time } \times \lambda}{h c}=\frac{1000 \times 10 \times 10^{-15} \times 600 \times 10^{-9}}{6.62 \times 10^{-34} \times 3 \times 10^{8}}=3 \times 10^{7}$

Answer (B)

Problem 3.- Calculate the number of photons produced each second by a $\mathrm{He}-\mathrm{Ne}$ laser rated 5 mW .

Solution: In one second the energy in the beam will be 0.005 joules and to get the number of photons we divide by the energy of one:

$$
\frac{0.005}{h c / \lambda}=\frac{0.005 \lambda}{h c}=\frac{0.005 \times 633 \times 10^{-9}}{6.62 \times 10^{-34} \times 3 \times 10^{8}}=\mathbf{1 . 6} \times \mathbf{1 0}^{\mathbf{1 6}}
$$

Problem 4.- A He-Ne laser emits light at a rate of 1.5 mW at a wavelength of 632 nm .

Calculate:

a) The number of photons emitted per second.
b) The linear momentum per second that the source emits.

Solution:

The energy of 1 photon is: $E_{1}=\frac{h c}{\lambda}=\frac{\left(6.62 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{632 \times 10^{-9}}=3.14 \times 10^{-19} \mathrm{~J}$
And the laser emits 1.5 mJ per second, so the number of photons is:

$$
N=\frac{1.5 \times 10^{-3}}{3.14 \times 10^{-19}}=4.77 \times 10^{15}
$$

The linear momentum is $p=\frac{E}{c}=\frac{1.5 \times 10^{-3}}{3 \times 10^{8}}=\mathbf{5} \times \mathbf{1 0}^{-\mathbf{1 2}} \mathbf{~ k g m} / \mathrm{s}$

