Optics

Snell's law

Snell's law $\quad n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

Total internal reflection $n_{1} \sin \theta_{\text {critical }}=n_{2} \sin 90^{\circ}$
Problem 1.- You point a laser beam to the surface of a fish tank as shown in the figure. Find the angle β at which the beam exits through the side of the tank (you can ignore the effect of the glass wall). The index of refraction of water is 1.33

Solution: To solve the problem we use Snell's law twice: at the first air-water interface:
$\mathrm{n}_{\text {air }} \operatorname{Sin} 80^{\circ}=\mathrm{n}_{\text {air }} \operatorname{Sin} \theta$
$\rightarrow(1) \operatorname{Sin} 80^{\circ}=1.33 \operatorname{Sin} \theta \rightarrow \operatorname{Sin} \theta=\frac{\operatorname{Sin} 80^{\circ}}{1.33}=0.7405 \rightarrow \theta=\operatorname{Sin}^{-1}(0.7405)=47 . \mathbf{8}^{\circ}$
Now, according to the geometry of the problem the incident angle on the second water-air interface is $\alpha=90-\theta=42.2^{\circ}$
And using Snell's law for a second time: $\quad n_{\text {water }} \operatorname{Sin} \alpha=n_{\text {water }} \operatorname{Sin} \beta$
$\rightarrow(1.33) \operatorname{Sin} 42.2^{\circ}=(1) \operatorname{Sin} \beta \rightarrow \operatorname{Sin} \beta=0.8939 \rightarrow \beta=\operatorname{Sin}^{-1}(0.8939)=\mathbf{6 3}^{\circ}$

Problem 2.- You point a He-Ne laser (wavelength 633 nm in air) to the surface of a window with index of refraction $\mathrm{n}=1.58$ at an angle of incidence of 45°. Calculate
a) The angle of refraction $\left(\theta_{r}\right)$.
b) The wavelength inside the window.

Solution:

a) The angle of refraction $\left(\theta_{\mathrm{r}}\right)$:
$\sin 45^{\circ}=1.58 \sin \theta_{r} \rightarrow \theta_{r}=\sin ^{-1}\left(\frac{\sin 45^{\circ}}{1.58}\right)=\mathbf{2 6 . 6}{ }^{\circ}$
b) The wavelength inside the window:

$$
\lambda_{\text {window }}=\frac{\lambda_{\text {air }}}{1.58}=\frac{633 \mathrm{~nm}}{1.58}=400.6 \mathrm{~nm}
$$

Problem 3.- A light source is at the bottom of a pool of alcohol (index of refraction is 1.36). At what minimum angle of incidence will a ray be totally reflected at the surface?
(A) 0°
(B) 22°
(C) 27°
(D) 47°
(E) 60°

Solution: To have total internal reflection the angle of refraction in air must be 90 degrees, so: $\sin 90^{\circ}=1.36 \sin \theta \rightarrow \theta=47.3^{\circ}$

Problem 4.- A scuba diver observes a circle of light when looking to the surface of the water. This phenomenon is due to total internal reflection beyond the critical angle θ_{c}.
Calculate the diameter of the circle if the diver's depth is 12 m .

Solution: The critical angle is:
$\theta_{c}=\sin ^{-1}\left(\frac{1}{1.33}\right)=48.75^{\circ}$

And the diameter then is:
$D=2 \times 12 \tan \left(48.75^{\circ}\right)=\mathbf{2 7 . 4} \mathbf{m}$

