Optics

Thick lenses

Problem 1.- Find the position of the image of a candle located 28 cm away from a transparent spherical crystal ball of radius 12 cm and index of refraction $\mathrm{n}=1.54$

Solution: First, we find the image produced by the first curvature
$\frac{1}{28}+\frac{1.54}{d_{i}}=\frac{1.54-1}{12} \rightarrow d_{i}=165.8 \mathrm{~cm}$
This gives us the object distance for the second interface
$d_{o B}=-\left(d_{i}-24\right)=-(165.8-24)=-141.8 \mathrm{~cm}$
Finally, we calculate the image distance produced by the second curved glass

$$
\frac{1.54}{-141.8}+\frac{1}{d_{i}}=\frac{1.54-1}{12} \rightarrow d_{i}=\mathbf{1 7 . 9} \mathbf{~ c m}
$$

This distance is going to be on the right side of the crystal ball.
Problem 2.- Consider a biconvex lens made of silica glass ($\mathrm{n}=1.52$) with identical spherical surfaces of 20 cm radius. Find the focal length of this lens assuming it is very thin.

Now assume the lens has an axial thickness of 5 cm . Find the position of the image of an object located 12 cm from the first vertex.

Solution: For a thin lens we can write: $\frac{1}{d_{i}}+\frac{1}{d_{o}}=\frac{n-1}{R_{1}}+\frac{n-1}{R_{2}}$ or: $f=\frac{1}{\frac{n-1}{R_{1}}+\frac{n-1}{R_{2}}}$
With the values of the problem:
$f=\frac{1}{\frac{0.52}{20 c m}+\frac{0.52}{20 c m}}=19.2 \mathrm{~cm}$
Now assuming the lens has an axial thickness of 5 cm we need to be more careful. The position of the image created by the first interface can be found with the following equation:
$\frac{1}{d_{o}}+\frac{n}{d_{i}}=\frac{n-1}{R_{1}} \rightarrow \frac{1}{12 c m}+\frac{1.52}{d_{i}}=\frac{1.52-1}{20 \mathrm{~cm}} \rightarrow d_{i}=-26.5 \mathrm{~cm}$

And then we should realize that the image created by the first interface is the object to the second interface. Including the distances between the two surfaces:

$$
d_{o}^{\prime}=-d_{i}+d_{12}=26.5+5=31.5 \mathrm{~cm}
$$

So for the second interface:
$\frac{1.52}{31.5 \mathrm{~cm}}+\frac{1}{d_{i}{ }^{\prime}}=\frac{1.52-1}{20 \mathrm{~cm}} \rightarrow d_{i}{ }^{\prime}=\mathbf{- 4 4 . 9} \mathrm{cm}$

