
Optics 
 

Planck’s radiation 
 

Consider a cavity of length L with metallic walls. Since metals are good conductors of 

electricity, the electric field at each wall will have to be zero. Then the only stationary modes 

allowed are: 
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According to statistical physics the average energy stored in this mode will be: 
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If we wanted to calculate the density of energy we would need to add the contribution from each 

mode and divide by the volume of the cavity. Let’s assume the cavity is a cube, so there will be a 

contribution from each possible direction and each polarization (a factor of 2).  

 

The modes will be combinations of three different orientations: (nx, ny, nz) with an energy: 
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Now to find out the number of modes in a wavelength interval notice that the number of modes 

grows like 1/8 the volume of a sphere: 
3

3
3

3

1 4 1 4 2 4
# modes ( ) # modes ( )

8 3 8 3 3
o o o

o o

L L
n n nπ λ λ π π

λ λ

     < = → > = =        

 

Taking a derivative to find the density of modes: 
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number of modes. 

 

Going back to the energy, we can now calculate the density of energy per wavelength and per 

volume of the cavity: 
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To get the radiation we multiply by c/4, the speed of light and a factor of four due to the 

geometry of the vector distribution. 

 
2

5

2 1

1B

hc

k T

hc
R

e
λ

π

λ
=

−

 


