Physics I

Blackbody Radiation

Radiation law: Radiation $($ power $)=$ Area $\times \varepsilon \sigma T^{4}$, where $\sigma=5.67 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}^{4}}$

Problem 1.- Consider a satellite with the shape of a tetrahedron and with one face directed towards the sun receiving $1350 \mathrm{~W} / \mathrm{m}^{2}$ of radiation. Calculate the temperature of the satellite if all 4 faces are in equilibrium.

Problem 2.- Consider that a satellite in orbit has the shape of a cube and one side is facing the sun and receiving $1,300 \mathrm{~W} / \mathrm{m}^{2}$ of radiation. Calculate the temperature of the satellite if it emits equally from all its 6 sides.

Problem 3.- Planet Mercury has a spherical shape. It receives radiation from the sun at a rate of $9,300 \mathrm{~W} / \mathrm{m}^{2}$. Estimate the temperature of the surface assuming it behaves like a black body with constant temperature.

Hint: Consider that the sun only illuminates an area equivalent to a circle, but the planet emits in every direction.

Problem 4.- Why is a good emitter of radiation called a black body?
Problem 5.- Consider that a satellite in orbit has the shape of a cylinder with the circular base facing the sun and receiving $1,350 \mathrm{~W} / \mathrm{m}^{2}$ of radiation. Calculate the temperature of the satellite if it emits equally from all parts of its surface and has a length of 20R (R being the radius of the base).

Problem 6.- The Sun, whose surface temperature is 5800 K , emits $3.2 \times 10^{26} \mathrm{~W}$ of radiation. Consider a brown dwarf star with the same size, but which only emits $0.2 \times 10^{26} \mathrm{~W}$. Calculate its surface temperature.

Problem 7.- Regarding the density of energy in a cavity as a function of lambda $U(\lambda)$ and as a function of frequency $U(f)$:
A) Why is the maximum given by Wien's law, $\lambda_{\text {MAX }} T=2.9 \mathrm{mmK}$, not the same for $\mathrm{U}(\mathrm{f})$?
B) Use the law stated above to find the wavelength at maximum intensity produced by a pizza oven whose temperature is $220^{\circ} \mathrm{C}$

