Physics I

Blackbody Radiation

Radiation law: Radiation(*power*) = $Area \times \varepsilon \sigma T^4$, where $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$

Problem 1.- Consider a satellite with the shape of a tetrahedron and with one face directed towards the sun receiving 1350 W/m^2 of radiation. Calculate the temperature of the satellite if all 4 faces are in equilibrium.

Problem 2.- Consider that a satellite in orbit has the shape of a cube and one side is facing the sun and receiving $1,300 \text{ W/m}^2$ of radiation. Calculate the temperature of the satellite if it emits equally from all its 6 sides.

Problem 3.- Planet Mercury has a spherical shape. It receives radiation from the sun at a rate of $9,300 \text{ W/m}^2$. Estimate the temperature of the surface assuming it behaves like a black body with constant temperature.

Hint: Consider that the sun only illuminates an area equivalent to a circle, but the planet emits in every direction.

Problem 4.- Why is a good emitter of radiation called a black body?

Problem 5.- Consider that a satellite in orbit has the shape of a cylinder with the circular base facing the sun and receiving $1,350 \text{ W/m}^2$ of radiation. Calculate the temperature of the satellite if it emits equally from all parts of its surface and has a length of 20R (R being the radius of the base).

Problem 6.- The Sun, whose surface temperature is 5800K, emits 3.2×10^{26} W of radiation. Consider a brown dwarf star with the same size, but which only emits 0.2×10^{26} W. Calculate its surface temperature.

Problem 7.- Regarding the density of energy in a cavity as a function of lambda $U(\lambda)$ and as a function of frequency U(f):

A) Why is the maximum given by Wien's law, $\lambda_{MAX}T = 2.9$ mmK, not the same for U(f)?

B) Use the law stated above to find the wavelength at maximum intensity produced by a pizza oven whose temperature is 220°C