Physics I

Blackbody Radiation

Radiation law: Radiation(*power*) = Area × $\varepsilon \sigma T^4$, where $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$

Problem 1.- Consider a satellite with the shape of a tetrahedron and with one face directed towards the sun receiving 1350 W/m^2 of radiation. Calculate the temperature of the satellite if all 4 faces are in equilibrium.

Solution: The satellite receives energy at a rate equal to:

 $P_{absorbed} = 1,350 \times A$, where A is the area of one of the triangles.

but emits in all directions:

$$P_{emitted} = \sigma T^4 \times (4A)$$

These quantities should be the same in equilibrium, so: $T = \sqrt[4]{\frac{1350}{5.67 \times 10^{-8} \times 4}} = 278 \text{ K}$

Problem 2.- Consider that a satellite in orbit has the shape of a cube and one side is facing the sun and receiving $1,300 \text{ W/m}^2$ of radiation. Calculate the temperature of the satellite if it emits equally from all its 6 sides.

Solution: The satellite receives energy at a rate equal to: $P_{absorbed} = 1,300 \times L^2$,

but emits in all directions: $P_{emitted} = \sigma T^4 \times (6L^2)$

These quantities should be the same in equilibrium, so:

$$1,300 \times L^2 = \sigma T^4 \times (6L^2) \to T = \sqrt[4]{\frac{1,300}{5.67 \times 10^{-8} \times 6}} = 250 \text{ K}$$

Problem 3.- Planet Mercury has a spherical shape. It receives radiation from the sun at a rate of $9,300 \text{ W/m}^2$. Estimate the temperature of the surface assuming it behaves like a black body with constant temperature.

Hint: Consider that the sun only illuminates an area equivalent to a circle, but the planet emits in every direction.

Solution: The energy absorbed is: $area \times 9300 = \pi r^2 \times 9300$ The energy emitted is: $area \times \sigma T^4 = 4\pi r^2 \times \sigma T^4$

These two are equal in equilibrium, so: $\pi r^2 \times 9300 = 4\pi r^2 \times \sigma T^4 \rightarrow T = 4\sqrt{\frac{9300}{4\sigma}} = 450 \text{ K}$

Problem 4.- Why is a good emitter of radiation called a black body?

Answer: Good emitters are also good absorbers, so they look black at room temperature.

Problem 5.- Consider that a satellite in orbit has the shape of a cylinder with the circular base facing the sun and receiving $1,350 \text{ W/m}^2$ of radiation. Calculate the temperature of the satellite if it emits equally from all parts of its surface and has a length of 20R (R being the radius of the base).

Solution: The satellite receives energy at a rate equal to

$$P_{absorbed} = 1350 \times \pi R^2$$
,

but emits in all directions:

$$P_{emitted} = \sigma T^4 \times (2\pi R^2 + 2\pi R \times 20R)$$

These quantities should be the same in equilibrium, so

$$1350 \times \pi R^{2} = \sigma T^{4} \times \left(2\pi R^{2} + 2\pi R \times 20R\right) \to T = \sqrt[4]{\frac{1350 \times \pi R^{2}}{5.67 \times 10^{-8} \times 42\pi R^{2}}} = 154 \text{ K}$$

Problem 6.- The Sun, whose surface temperature is 5800K, emits 3.2×10^{26} W of radiation. Consider a brown dwarf star with the same size, but which only emits 0.2×10^{26} W. Calculate its surface temperature.

Solution: Since the brown dwarf radiation is 1/16 of the Sun and the radiation is proportional to the temperature to the fourth power, the temperature of the brown dwarf will be $\frac{1}{2}$ the temperature of the sun (2,900 K).

Problem 7.- Regarding the density of energy in a cavity as a function of lambda $U(\lambda)$ and as a function of frequency U(f):

A) Why is the maximum given by Wien's law, $\lambda_{MAX}T = 2.9$ mmK, not the same for U(f)?

B) Use the law stated above to find the wavelength at maximum intensity produced by a pizza oven whose temperature is 220°C

Solution:

A) Since the differentials $d\lambda$ and df are not equal, the maximum given by Wien's law is not the same for U(f). This is because when taking the differential df you pick up a factor $-c/\lambda^2$.

B) T = 220+273.15 = 493.15K, so: $\lambda_{MAX} = \frac{2.9 \text{mmK}}{493.15\text{K}} = 5.88 \ \mu\text{m}$