Physics I

Blackbody Radiation

Radiation law: Radiation $($ power $)=$ Area $\times \varepsilon \sigma T^{4}$, where $\sigma=5.67 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}^{4}}$

Problem 1.- Consider a satellite with the shape of a tetrahedron and with one face directed towards the sun receiving $1350 \mathrm{~W} / \mathrm{m}^{2}$ of radiation. Calculate the temperature of the satellite if all 4 faces are in equilibrium.

Solution: The satellite receives energy at a rate equal to:
$P_{\text {absorbed }}=1,350 \times A$, where A is the area of one of the triangles.
but emits in all directions:

$$
P_{\text {emited }}=\sigma T^{4} \times(4 A)
$$

These quantities should be the same in equilibrium, so: $T=\sqrt[4]{\frac{1350}{5.67 \times 10^{-8} \times 4}}=\mathbf{2 7 8} \mathbf{~ K}$
Problem 2.- Consider that a satellite in orbit has the shape of a cube and one side is facing the sun and receiving $1,300 \mathrm{~W} / \mathrm{m}^{2}$ of radiation. Calculate the temperature of the satellite if it emits equally from all its 6 sides.

Solution: The satellite receives energy at a rate equal to: $P_{\text {absorbed }}=1,300 \times L^{2}$,
but emits in all directions: $P_{\text {emitted }}=\sigma T^{4} \times\left(6 L^{2}\right)$
These quantities should be the same in equilibrium, so:
$1,300 \times L^{2}=\sigma T^{4} \times\left(6 L^{2}\right) \rightarrow T=\sqrt[4]{\frac{1,300}{5.67 \times 10^{-8} \times 6}}=\mathbf{2 5 0} \mathbf{~ K}$
Problem 3.- Planet Mercury has a spherical shape. It receives radiation from the sun at a rate of $9,300 \mathrm{~W} / \mathrm{m}^{2}$. Estimate the temperature of the surface assuming it behaves like a black body with constant temperature.
Hint: Consider that the sun only illuminates an area equivalent to a circle, but the planet emits in every direction.

Solution: The energy absorbed is: area $\times 9300=\pi r^{2} \times 9300$
The energy emitted is: are $a \times \sigma T^{4}=4 \pi r^{2} \times \sigma T^{4}$
These two are equal in equilibrium, so: $\pi r^{2} \times 9300=4 \pi r^{2} \times \sigma T^{4} \rightarrow T=\sqrt[4]{\frac{9300}{4 \sigma}}=\mathbf{4 5 0} \mathbf{K}$
Problem 4.- Why is a good emitter of radiation called a black body?
Answer: Good emitters are also good absorbers, so they look black at room temperature.
Problem 5.- Consider that a satellite in orbit has the shape of a cylinder with the circular base facing the sun and receiving $1,350 \mathrm{~W} / \mathrm{m}^{2}$ of radiation. Calculate the temperature of the satellite if it emits equally from all parts of its surface and has a length of 20R (R being the radius of the base).

Solution: The satellite receives energy at a rate equal to

$$
P_{\text {absorbed }}=1350 \times \pi R^{2},
$$

but emits in all directions:

$$
P_{\text {emitted }}=\sigma T^{4} \times\left(2 \pi R^{2}+2 \pi R \times 20 R\right)
$$

These quantities should be the same in equilibrium, so
$1350 \times \pi R^{2}=\sigma T^{4} \times\left(2 \pi R^{2}+2 \pi R \times 20 R\right) \rightarrow T=\sqrt[4]{\frac{1350 \times \pi R^{2}}{5.67 \times 10^{-8} \times 42 \pi R^{2}}}=\mathbf{1 5 4} \mathbf{K}$
Problem 6.- The Sun, whose surface temperature is 5800 K , emits $3.2 \times 10^{26} \mathrm{~W}$ of radiation. Consider a brown dwarf star with the same size, but which only emits $0.2 \times 10^{26} \mathrm{~W}$. Calculate its surface temperature.

Solution: Since the brown dwarf radiation is $1 / 16$ of the Sun and the radiation is proportional to the temperature to the fourth power, the temperature of the brown dwarf will be $1 / 2$ the temperature of the sun $(\mathbf{2 , 9 0 0} \mathbf{K})$.

Problem 7.- Regarding the density of energy in a cavity as a function of lambda $U(\lambda)$ and as a function of frequency $U(f)$:
A) Why is the maximum given by Wien's law, $\lambda_{\text {MAX }} T=2.9 \mathrm{mmK}$, not the same for $\mathrm{U}(\mathrm{f})$?
B) Use the law stated above to find the wavelength at maximum intensity produced by a pizza oven whose temperature is $220^{\circ} \mathrm{C}$

Solution:

A) Since the differentials $\mathrm{d} \lambda$ and df are not equal, the maximum given by Wien's law is not the same for $U(f)$. This is because when taking the differential df you pick up a factor $-\mathrm{c} / \lambda^{2}$.
B) $\mathrm{T}=220+273.15=493.15 \mathrm{~K}$, so: $\lambda_{\text {MAX }}=\frac{2.9 \mathrm{mmK}}{493.15 \mathrm{~K}}=\mathbf{5 . 8 8} \boldsymbol{\mu \mathrm { m }}$

