Physics I

Boltzmann factors

The probability of being in a state with energy ε is proportional to the Boltzmann factor $e^{-k_B T}$ where $k_B = 1.38 \times 10^{-23} J/K$

Problem 1.- A paramagnetic atom has two states with energies $E_1 = 0J$, which is the ground state, and $E_2 = 2.87 \times 10^{-21} J$, which is the excited state. Calculate the probability of being in the ground state when T = 300 K.

Problem 2.- Suppose that an atom has a ground state with energy zero and three excited states with energy ε . The atom is in an environment where the thermal energy k_BT is much larger than ε . Estimate the probability of finding the atom in the ground state.

Problem 3.- Which of the following molecules moves fastest in the atmosphere and which is the slowest and why? Atomic masses: H=1; C=12; N=14; O=16

 $H_2O \qquad CO_2 \qquad O_2 \qquad N_2$

Problem 4.- What is the probability of finding the spin of a free electron in its ground state when the magnetic field is B = 1.0 tesla, and the temperature is T = 1.5K? The product of the magnetic moment times the magnetic field is: $\mu B = 9.3 \times 10^{-24} J$

Problem 5.- The Maxwell distribution of gas speeds is given by:

$$f(v) = 4\pi N \left(\frac{m}{2\pi k_B T}\right)^{3/2} v^2 e^{-\frac{1}{2}\frac{mv^2}{k_B T}}$$

Calculate the most probable speed, which is the speed that has the maximum probability of occurring.

Problem 6.- Calculate the ratio of rms speed between SF_6 molecules and He atoms at room temperature if they are diluted enough to treat them as ideal gases. Atomic mass of S = 32, and F = 19

Problem 7.- Calculate the probability to find a diatomic molecule in its vibrational ground state if the temperature is 300K and the first excited state has an energy of 6.9×10^{-21} J above the ground state.

To simplify the problem, consider only two states: the ground state with energy $E_1=0$ and the first excited state.

Problem 8.- Helium doesn't stay in the atmosphere very long because it has such a light mass that it can easily leave the surface of the Earth. Calculate the average speed (the rms value) of helium at T=300K.

Problem 8a.- Calculate the rms average speed of the amino acid Glycine in the gas phase at 37° C knowing that its mass is 75 amu and it can be treated as an ideal gas. $1amu=1.66 \times 10^{-27} \text{ kg}$

Problem 8b.- In principle, can we separate N_2 from O_2 by diffusion? What is the ratio of speeds of these two molecules at room temperature?

Problem 9.- Calculate the probability that an electron will be in the conduction band of silicon, whose energy is 1.12 eV higher than the valence band. Take T=300K and to simplify the problem consider only two states: the ground state with energy $E_1=0$ and the first excited state with $E_2=1.12$ eV.

1 eV=1.6×10⁻¹⁹ J