Physics I

Boltzmann factors

The probability of being in a state with energy ε is proportional to the Boltzmann factor $e^{-\frac{\varepsilon}{k_{B} T}}$ where $\mathrm{k}_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$

Problem 1.- A paramagnetic atom has two states with energies $E_{1}=0 J$, which is the ground state, and $E_{2}=2.87 \times 10^{-21} J$, which is the excited state.
Calculate the probability of being in the ground state when $\mathrm{T}=300 \mathrm{~K}$.
Solution: The Boltzmann factors are:
Ground state: $e^{-E / k_{B} T}=e^{-0 /\left(1.38 \times 10^{-23}\right)(300)}=1$
Excited state: $e^{-E / k_{B} T}=e^{-2.87 \times 10^{-21}\left(1.38 \times 10^{-23}\right)(300)}=1 / 2$
The probability of being in the ground state is proportional to 1 and the probability of being in the excited state is proportional to $1 / 2$. But the sum of the two probabilities has to be 100%, so the answer is 67% of being in the ground state (and 33% in the excited state).

Problem 2.- Suppose that an atom has a ground state with energy zero and three excited states with energy ε. The atom is in an environment where the thermal energy $k_{B} T$ is much larger than ε. Estimate the probability of finding the atom in the ground state.

Solution: If $k_{B} T$ is much larger that ε, then $e^{-\frac{\varepsilon}{k_{B} T}}$ is approximately 1 , so the probability of being in the ground state is the same as being in any of the three excited states, so the answer is 25\%.

Problem 3.- Which of the following molecules moves fastest in the atmosphere and which is the slowest and why?

Atomic masses: $\mathrm{H}=1 ; \mathrm{C}=12 ; \mathrm{N}=14 ; \mathrm{O}=16$
$\mathrm{H}_{2} \mathrm{O}$
CO_{2}
O_{2}
N_{2}

Solution: The fastest in the atmosphere is $\mathbf{H}_{2} \mathbf{O}$ because it has the lightest mass. The slowest is CO_{2} because it is the heaviest.

Problem 4.- What is the probability of finding the spin of a free electron in its ground state when the magnetic field is $\mathrm{B}=1.0$ tesla, and the temperature is $\mathrm{T}=1.5 \mathrm{~K}$?
The product of the magnetic moment times the magnetic field is: $\mu B=9.3 \times 10^{-24} \mathrm{~J}$

Solution: The probabilities are proportional to the Boltzmann factors:

$$
\begin{aligned}
& P_{\text {ground state }}=C e^{\mu B / k_{B} T} \\
& P_{\text {first excited state }}=C e^{-\mu B / k_{B} T}
\end{aligned}
$$

Since they add to 1: $C e^{\mu B / k_{B} T}+C e^{-\mu B / k_{B} T}=1 \rightarrow C=\frac{1}{e^{\mu B / k_{B} T}+e^{-\mu B / k_{B} T}}$
So, the probability to be in the ground state is:

$$
\begin{aligned}
& P_{\text {ground state }}=\frac{e^{\mu B / k_{B} T}}{e^{\mu B / k_{B} T}+e^{-\mu B / k_{B} T}} \text { But: } \frac{\mu B}{k_{B} T}=\frac{9.3 \times 10^{-24} \mathrm{~J}}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(1.5 \mathrm{~K})}=0.449 \\
& P_{\text {ground state }}=\frac{e^{0.449}}{e^{0.449}+e^{-0.449}}=\mathbf{0 . 7 1}
\end{aligned}
$$

Problem 5.- The Maxwell distribution of gas speeds is given by:

$$
f(v)=4 \pi N\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} v^{2} e^{-\frac{1 m v^{2}}{2 k_{B} T}}
$$

Calculate the most probable speed, which is the speed that has the maximum probability of occurring.

Solution: We find the maximum probability by taking the derivative of the distribution function and equaling it to zero:
$\frac{d f(v)}{d v}=4 \pi N\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2}\left(2 v+v^{2}\left(-\frac{m v}{k_{B} T}\right)\right) e^{-\frac{1 m v^{2}}{2 k_{B} T}}=0 \rightarrow 2+v\left(-\frac{m v}{k_{B} T}\right)=0$

So, the speed with the most probability is: $\quad v=\sqrt{\frac{2 k_{B} T}{m}}$

Problem 6.- Calculate the ratio of rms speed between SF_{6} molecules and He atoms at room temperature if they are diluted enough to treat them as ideal gases.
Atomic mass of $\mathrm{S}=32$, and $\mathrm{F}=19$
Solution: The ratio of rms speeds between SF_{6} molecules and He atoms at room temperature is:
$\frac{v_{S F 6}}{v_{H e}}=\sqrt{\frac{m_{H e}}{m_{S F 6}}}=\sqrt{\frac{4}{32+6 \times 19}}=\mathbf{0 . 1 6 6}$

Problem 7.- Calculate the probability to find a diatomic molecule in its vibrational ground state if the temperature is 300 K and the first excited state has an energy of $6.9 \times 10^{-21} \mathrm{~J}$ above the ground state. To simplify the problem, consider only two states: the ground state with energy $\mathrm{E}_{1}=0$ and the first excited state.

Solution: The probability is proportional to the Boltzmann factor.
With two levels:
$P_{1}=C e^{-E_{1} / k_{B} T}$ and $P_{2}=C e^{-E_{2} / k_{B} T}$, but $P_{1}+P_{2}=1$, so $C=\frac{1}{e^{-E_{1} / k_{B} T}+e^{-E_{2} / k_{B} T}}$
Then, the probability of being in the ground state is:

$$
P_{1}=\frac{e^{-E_{1} / k_{B} T}}{e^{-E_{1} / k_{B} T}+e^{-E_{2} / k_{B} T}}=\frac{1}{1+e^{-6.9 \times 10^{-21} J /\left(1.38 \times 10^{-23} J / K \times 300 K\right)}}=\mathbf{0 . 8 4}
$$

Problem 8.- Helium doesn't stay in the atmosphere very long because it has such a light mass that it can easily leave the surface of the Earth. Calculate the average speed (the rms value) of helium at $\mathrm{T}=300 \mathrm{~K}$.

Solution: The rms value of the speed for helium at $\mathrm{T}=300 \mathrm{~K}$.
$v_{r m s}=\sqrt{\frac{3 k_{B} T}{m}}=\sqrt{\frac{3\left(1.38 \times 10^{-23}\right)(300)}{4 \times 1.66 \times 10^{-27}}}=\mathbf{1 , 3 6 0} \mathrm{m} / \mathrm{s}$
Problem 8a.- Calculate the rms average speed of the amino acid Glycine in the gas phase at $37^{\circ} \mathrm{C}$ knowing that its mass is 75 amu and it can be treated as an ideal gas.
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$
Solution:
$\frac{1}{2} m v_{r m s}^{2}=\frac{3}{2} k_{B} T \rightarrow v_{r m s}=\sqrt{\frac{3 k_{B} T}{m}}=\sqrt{\frac{3 \times 1.38 \times 10^{-23} \times(37+273)}{75 \times 1.66 \times 10^{-27}}}=\mathbf{3 2 1} \mathbf{~ m} / \mathrm{s}$
Problem 8b.- In principle, can we separate N_{2} from O_{2} by diffusion? What is the ratio of speeds of these two molecules at room temperature?

Problem 9.- Calculate the probability that an electron will be in the conduction band of silicon, whose energy is 1.12 eV higher than the valence band. Take $\mathrm{T}=300 \mathrm{~K}$ and to simplify the problem consider only two states: the ground state with energy $\mathrm{E}_{1}=0$ and the first excited state with $\mathrm{E}_{2}=1.12 \mathrm{eV}$.
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

Solution: To figure the probability we use the Boltzmann factors:
$p=\frac{e^{-E_{2} / k_{B} T}}{e^{-E_{1} / k_{B} T}+e^{-E_{2} / k_{B} T}}=\frac{e^{-E_{2} / k_{B} T}}{1+e^{-E_{2} / k_{B} T}} \approx e^{-E_{2} / k_{B} T}=e^{-1.12 \times 1.6 \times 10^{-19} 1 . .38 \times 10^{-23} \times 300}=\mathbf{1 . 5 9 \times 1 0 ^ { - 1 9 }}$

