Physics I

Boltzmann factors

The probability of being in a state with energy ε is proportional to the Boltzmann factor $e^{\frac{\varepsilon}{k_B T}}$ where $k_R = 1.38 \times 10^{-23} J/K$

Problem 1.- A paramagnetic atom has two states with energies $E_1 = 0J$, which is the ground state, and $E_2 = 2.87 \times 10^{-21} J$, which is the excited state.

Calculate the probability of being in the ground state when T = 300 K.

Solution: The Boltzmann factors are:

Ground state: $e^{-E/k_BT} = e^{-0/(1.38 \times 10^{-23})(300)} = 1$

Excited state: $e^{-E/k_BT} = e^{-2.87 \times 10^{-21}/(1.38 \times 10^{-23})(300)} = 1/2$

The probability of being in the ground state is proportional to 1 and the probability of being in the excited state is proportional to $\frac{1}{2}$. But the sum of the two probabilities has to be 100%, so the answer is 67% of being in the ground state (and 33% in the excited state).

Problem 2.- Suppose that an atom has a ground state with energy zero and three excited states with energy ε . The atom is in an environment where the thermal energy k_BT is much larger than ε . Estimate the probability of finding the atom in the ground state.

Solution: If k_BT is much larger that ε , then $e^{-\frac{\varepsilon}{k_BT}}$ is approximately 1, so the probability of being in the ground state is the same as being in any of the three excited states, so the answer is 25%.

Problem 3.- Which of the following molecules moves fastest in the atmosphere and which is the slowest and why?

Atomic masses: H=1; C=12; N=14; O=16

 $H_2O \qquad \quad CO_2 \qquad \quad O_2 \qquad \quad N_2$

Solution: The fastest in the atmosphere is H_2O because it has the lightest mass. The slowest is CO_2 because it is the heaviest.

Problem 4.- What is the probability of finding the spin of a free electron in its ground state when the magnetic field is B = 1.0 tesla, and the temperature is T = 1.5K?

The product of the magnetic moment times the magnetic field is: $\mu B = 9.3 \times 10^{-24} J$

Solution: The probabilities are proportional to the Boltzmann factors:

$$P_{ground\ state} = Ce^{\mu B/k_BT}$$

$$P_{\textit{first excited state}} = Ce^{-\mu B/k_B T}$$

Since they add to 1:
$$Ce^{\mu B/k_BT} + Ce^{-\mu B/k_BT} = 1 \rightarrow C = \frac{1}{e^{\mu B/k_BT} + e^{-\mu B/k_BT}}$$

So, the probability to be in the ground state is:

$$P_{ground \ state} = \frac{e^{\mu B/k_B T}}{e^{\mu B/k_B T} + e^{-\mu B/k_B T}} \quad \text{But: } \frac{\mu B}{k_B T} = \frac{9.3 \times 10^{-24} \, J}{(1.38 \times 10^{-23} \, J \, / \, K)(1.5 \, K)} = 0.449$$

$$P_{ground \ state} = \frac{e^{0.449}}{e^{0.449} + e^{-0.449}} = 0.71$$

Problem 5.- The Maxwell distribution of gas speeds is given by:

$$f(v) = 4\pi N \left(\frac{m}{2\pi k_B T}\right)^{3/2} v^2 e^{\frac{-1mv^2}{2k_B T}}$$

Calculate the most probable speed, which is the speed that has the maximum probability of occurring.

Solution: We find the maximum probability by taking the derivative of the distribution function and equaling it to zero:

$$\frac{df(v)}{dv} = 4\pi N \left(\frac{m}{2\pi k_B T}\right)^{3/2} \left(2v + v^2 \left(-\frac{mv}{k_B T}\right)\right) e^{\frac{-1}{2}\frac{mv^2}{k_B T}} = 0 \to 2 + v \left(-\frac{mv}{k_B T}\right) = 0$$

So, the speed with the most probability is: $v = \sqrt{\frac{2k_BT}{m}}$

Problem 6.- Calculate the ratio of rms speed between SF_6 molecules and He atoms at room temperature if they are diluted enough to treat them as ideal gases. Atomic mass of S = 32, and F = 19

Solution: The ratio of rms speeds between SF₆ molecules and He atoms at room temperature is:

$$\frac{v_{SF6}}{v_{He}} = \sqrt{\frac{m_{He}}{m_{SF6}}} = \sqrt{\frac{4}{32 + 6 \times 19}} = \mathbf{0.166}$$

Problem 7.- Calculate the probability to find a diatomic molecule in its vibrational ground state if the temperature is 300K and the first excited state has an energy of 6.9×10^{-21} J above the ground state. To simplify the problem, consider only two states: the ground state with energy $E_1=0$ and the first excited state.

Solution: The probability is proportional to the Boltzmann factor.

With two levels:

$$P_1 = Ce^{-E_1/k_BT}$$
 and $P_2 = Ce^{-E_2/k_BT}$, but $P_1 + P_2 = 1$, so $C = \frac{1}{e^{-E_1/k_BT} + e^{-E_2/k_BT}}$

Then, the probability of being in the ground state is:

$$P_1 = \frac{e^{-E_1/k_B T}}{e^{-E_1/k_B T} + e^{-E_2/k_B T}} = \frac{1}{1 + e^{-6.9 \times 10^{-21} J/(1.38 \times 10^{-23} J/K \times 300 K)}} = 0.84$$

Problem 8.- Helium doesn't stay in the atmosphere very long because it has such a light mass that it can easily leave the surface of the Earth. Calculate the average speed (the rms value) of helium at T=300K.

Solution: The rms value of the speed for helium at T=300K.

$$v_{rms} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3(1.38 \times 10^{-23})(300)}{4 \times 1.66 \times 10^{-27}}} =$$
1,360 m/s

Problem 8a.- Calculate the rms average speed of the amino acid Glycine in the gas phase at 37°C knowing that its mass is 75 amu and it can be treated as an ideal gas. 1amu=1.66×10⁻²⁷ kg

Solution:

$$\frac{1}{2}mv_{rms}^2 = \frac{3}{2}k_BT \rightarrow v_{rms} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3\times1.38\times10^{-23}\times(37+273)}{75\times1.66\times10^{-27}}} = 321 \text{ m/s}$$

Problem 8b.- In principle, can we separate N_2 from O_2 by diffusion? What is the ratio of speeds of these two molecules at room temperature?

Problem 9.- Calculate the probability that an electron will be in the conduction band of silicon, whose energy is 1.12 eV higher than the valence band. Take T=300K and to simplify the problem consider only two states: the ground state with energy $E_1=0$ and the first excited state with $E_2=1.12eV$.

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$

Solution: To figure the probability we use the Boltzmann factors:

$$p = \frac{e^{-E_2/k_BT}}{e^{-E_1/k_BT} + e^{-E_2/k_BT}} = \frac{e^{-E_2/k_BT}}{1 + e^{-E_2/k_BT}} \approx e^{-E_2/k_BT} = e^{-1.12 \times 1.6 \times 10^{-19}/1.38 \times 10^{-23} \times 300} = 1.59 \times 10^{-19}$$