Physics I

Ideal Gases

$$
\begin{array}{ll}
\mathrm{R}=8.314 \frac{\mathrm{~J}}{\mathrm{Kmol}}, & \mathrm{k}_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, \quad \text { 1atm }=1.013 \times 10^{5} \text { pascals } \\
\mathrm{T}_{\text {Kelvin }}=\mathrm{T}_{\text {Celsius }}+273.15 & \mathrm{PV}=\mathrm{nRT} \quad \text { or } \quad \mathrm{PV}=\mathrm{Nk}_{\mathrm{B}} \mathrm{~T}
\end{array}
$$

Problem 1.- How much mass of helium is contained in a 50.0 L cylinder at a pressure of 10.0 atm and a temperature of $35.0^{\circ} \mathrm{C}$?
[The atomic mass of helium is 4 amu]
Problem 2.-A tank of compressed oxygen is at a temperature of $27^{\circ} \mathrm{C}$ and a pressure of 2,500 kPa . Calculate the mass of oxygen contained in the tank if its volume is $0.12 \mathrm{~m}^{3}$.
[The molecular mass of O_{2} is 32]
Problem 3.- Calculate the molecular weight of a gas if 35.4 g of the gas stored in a 7.50 L tank exerts a pressure of 60.0 atm at a constant temperature of $45.5^{\circ} \mathrm{C}$

Problem 4.- How many moles of gas are contained in 890.0 mL at $21.0^{\circ} \mathrm{C}$ and 750.0 mm Hg pressure?

Problem 5.-1.09 g of H_{2} is contained in a 2.00 L container at $20.0^{\circ} \mathrm{C}$. What is the pressure in this container in mm Hg ?

Problem 6.- Calculate the volume 3.00 moles of a gas will occupy at $24.0^{\circ} \mathrm{C}$ and 762.4 mm Hg .
Problem 7.- What volume will 20.0 g of Argon occupy at STP?
Problem 8.- How many moles of gas would be present in a gas trapped within a 100.0 mL vessel at $25.0^{\circ} \mathrm{C}$ at a pressure of 2.50 atmospheres?

Problem 9.- How many moles of a gas would be present in a gas trapped within a $37.0-\mathrm{liter}$ vessel at $80.00{ }^{\circ} \mathrm{C}$ at a pressure of 2.50 atm ?

Problem 10.- If the number of moles of a gas is doubled at the same temperature and pressure, will the volume increase or decrease?

Problem 11.- What volume will 1.27 moles of helium gas occupy at STP?
Problem 12.- At what pressure would 1.50 mole of nitrogen gas at $23.0^{\circ} \mathrm{C}$ occupy 8.90 L ?
Problem 13.- What volume would 32.0 g of NO_{2} gas occupy at 3.12 atm and $18.0^{\circ} \mathrm{C}$?
Problem 14.- Find the volume of 2.40 mol of gas whose temperature is $50.0^{\circ} \mathrm{C}$ and whose pressure is 2.00 atm .

Problem 15.- Calculate the molecular weight of a gas if 35.44 g of the gas stored in a 7.50 L tank exerts a pressure of 60.0 atm at a constant temperature of $35.5^{\circ} \mathrm{C}$

Problem 16.- How many moles of gas are contained in a 50.0 L cylinder at a pressure of 100.0 atm and a temperature of $35.0^{\circ} \mathrm{C}$?

Problem 17.- Determine the number of moles of Krypton contained in a 3.25-liter gas tank at 5.80 atm and $25.5^{\circ} \mathrm{C}$. If the gas is Oxygen instead of Krypton, will the answer be the same? Why or why not?

Problem 18.- Determine the number of grams of carbon dioxide in a 450.6 mL tank at 1.80 atm and minus $50.5^{\circ} \mathrm{C}$. Determine the number of grams of oxygen that the same container will contain under the same temperature and pressure.

Problem 19.- Determine the volume of occupied by 2.34 grams of carbon dioxide gas at STP.
Problem 20.- A sample of argon gas at STP occupies 56.2 liters. Determine the number of moles of argon and the mass in the sample.

Problem 21.- At what temperature will 0.654 moles of neon gas occupy 12.30 liters at 1.95 atmospheres?

Problem 22.- A 30.6 g sample of gas occupies 22.4 L at STP. What is the molecular weight of this gas?

Problem 23.- A 40.0 g gas sample occupies 11.2 L at STP. Find the molecular weight of this gas.

Problem 24.- A 12.0 g sample of gas occupies 19.2 L at STP. What is the molecular weight of this gas?

Problem 25.- 96.0 g. of a gas occupies 48.0 L at 700.0 mm Hg and $20.0^{\circ} \mathrm{C}$. What is its molecular weight?

Problem 26.- 20.83 g . of a gas occupies 4.167 L at 79.97 kPa at $30.0^{\circ} \mathrm{C}$. What is its molecular weight?

Problem 27.- At STP 3.00 liters of an unknown gas has a mass of 9.50 grams. Calculate its molar mass.

Problem 28.- At STP 0.250 liter of an unknown gas has a mass of 1.00 gram. Calculate its molar mass.

Problem 29.- At STP 150.0 mL of an unknown gas has a mass of 0.250 gram. Calculate its molar mass.

Problem 30.-1.089 g of a gas occupies 4.50 L at $20.5^{\circ} \mathrm{C}$ and 0.890 atm . What is its molar mass?
Problem 31.- 0.190 g of a gas occupies 250.0 mL at STP. What is its molar mass? What gas is it? Hint - calculate molar mass of the gas.

Problem 32.- If 9.006 grams of a gas are enclosed in a 50.00 -liter vessel at 273.15 K and 2.000 atmospheres of pressure, what is the molar mass of the gas? What gas is this?

Problem 33.- A 50.00 -liter tank at minus $15.00^{\circ} \mathrm{C}$ contains 14.00 grams of helium gas and 10.00 grams of nitrogen gas.
a. Determine the moles of helium gas in the tank.
b. Determine the moles of nitrogen gas in the tank.
c. Determine the mole fraction of helium gas in the tank.
d. Determine the partial pressure of helium gas in the tank.
e. Determine the partial pressure of nitrogen gas in the tank.
f. Determine the total pressure of the mixture in the tank.
g. Determine the volume that the mixture will occupy at STP.

Problem 34.- Determine the number of moles of Krypton contained in a 3.25-liter gas tank at 5.80 atm and $25.5^{\circ} \mathrm{C}$. If the gas is Oxygen instead of Krypton, will the answer be the same? Why or why not?
[1 atm=101,300 pascal]
Problem 35.- A compressed cylinder of O_{2} contains 30 kg of oxygen at $\mathrm{T}=25^{\circ} \mathrm{C}$ and 10^{6} pascals. Calculate the volume of the cylinder.

Problem 35a.- A compressed cylinder of O_{2} contains 6.4 kg of oxygen at $\mathrm{T}=26.85^{\circ} \mathrm{C}$ and $\mathrm{P}=6 \mathrm{~atm}$. Calculate the volume of the cylinder. [The molecular weight of oxygen is 32]

Problem 36.- A diver releases a 1 cm -radius air bubble at a depth of 45 m (so you can consider the absolute pressure to be 5.5 atm) at a temperature of $7^{\circ} \mathrm{C}$. Calculate the radius of the bubble just before it surfaces (where the pressure is 1.0 atm) if the temperature is $17^{\circ} \mathrm{C}$.
[Volume of a sphere $=\frac{4}{3} \pi R^{3}$, where R is the radius]

