Physics I

Ideal Gases

$$
\begin{array}{ll}
\mathrm{R}=8.314 \frac{\mathrm{~J}}{\mathrm{Kmol}}, & \mathrm{k}_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, \quad \text { 1atm }=1.013 \times 10^{5} \text { pascals } \\
\mathrm{T}_{\text {Kelvin }}=\mathrm{T}_{\text {Celsius }}+273.15 & \mathrm{PV}=\mathrm{nRT} \quad \text { or } \quad \mathrm{PV}=\mathrm{Nk}_{\mathrm{B}} \mathrm{~T}
\end{array}
$$

Problem 1.- How much mass of helium is contained in a 50.0 L cylinder at a pressure of 10.0 atm and a temperature of $35.0^{\circ} \mathrm{C}$?
[The atomic mass of helium is 4 amu]
Solution: The number of moles is: $n=\frac{P V}{R T}=\frac{\left(10 \times 1.013 \times 10^{5}\right)(0.05)}{8.314 \times(273+35)}=19.78$
The mass is $m=n M=19.78 \times 0.004 \mathrm{~kg}=\mathbf{0 . 0 7 9} \mathbf{~ k g}$
Problem 2.-A tank of compressed oxygen is at a temperature of $27^{\circ} \mathrm{C}$ and a pressure of 2,500 kPa . Calculate the mass of oxygen contained in the tank if its volume is $0.12 \mathrm{~m}^{3}$.
[The molecular mass of O_{2} is 32]
Solution: First, we calculate the number of moles:
$\mathrm{pV}=\mathrm{nRT} \rightarrow \mathrm{n}=\frac{\mathrm{pV}}{\mathrm{RT}}$
$\mathrm{p}=2,500 \mathrm{kPa}=2,500 \times 10^{3} \mathrm{~Pa}$
$\mathrm{T}=27+273=300 \mathrm{~K}$
$\mathrm{V}=0.12 \mathrm{~m}^{3}$
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K}$
$\rightarrow \mathrm{n}=\frac{\mathrm{pV}}{\mathrm{RT}}=\frac{\left(2500 \times 10^{3} \mathrm{~Pa}\right)\left(0.12 \mathrm{~m}^{3}\right)}{8.314 \mathrm{~J} / \mathrm{K}(300 \mathrm{~K})}=120$ moles
Since each mole is 32 grams:
Mass of oxygen $=120 \times 32 \mathrm{~g}=\mathbf{3 . 8 5} \mathbf{k g}$
Problem 3.- Calculate the molecular weight of a gas if 35.4 g of the gas stored in a 7.50 L tank exerts a pressure of 60.0 atm at a constant temperature of $45.5^{\circ} \mathrm{C}$

Solution:

$V=7.5 \mathrm{~L}=7.5 \times 10^{-3} \mathrm{~m}^{3}$
$T=45.5+273.15=318.65 \mathrm{~K}$
$P=60 \mathrm{~atm}\left(\frac{1.013 \times 10^{5} \text { pascals }}{1 \mathrm{~atm}}\right)=60.8 \times 10^{5}$ pascals
With these values: $n=\frac{P V}{R T}=\frac{\left(60.8 \times 10^{5}\right)\left(7.5 \times 10^{-3}\right)}{8.314(318.65)}=\mathbf{1 7 . 2}$ moles
So, the molecular mass is $M=\frac{35.4}{17.2}=\mathbf{2 . 0 5}$

Problem 4.- How many moles of gas are contained in 890.0 mL at $21.0^{\circ} \mathrm{C}$ and 750.0 mm Hg pressure?

Solution: The problem provides the following information:
$V=890 m L=890 m L\left(\frac{1 L}{1000 m L}\right)\left(\frac{1 m^{3}}{1000 L}\right)=890 \times 10^{-6} m^{3}$
$T=21+273=294 K$
$P=750 \mathrm{mmHg}=750 \mathrm{mmHg}\left(\frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}\right)\left(\frac{1.013 \times 10^{5} \text { pascals }}{1 \mathrm{~atm}}\right)=0.999 \times 10^{5}$ pascals
With these values:

$$
n=\frac{P V}{R T}=\frac{\left(0.999 \times 10^{5}\right)\left(890 \times 10^{-6}\right)}{8.314(294)}=\mathbf{0 . 0 3 6} \text { moles }
$$

Problem 5.-1.09 g of H_{2} is contained in a 2.00 L container at $20.0^{\circ} \mathrm{C}$. What is the pressure in this container in mm Hg ?

Solution: The number of moles is: $n=\frac{\text { mass }}{\text { molecular mass in grams }}=\frac{1.09 g}{2 g}=0.545$
$V=2 L=2 L\left(\frac{1 \mathrm{~m}^{3}}{1000 L}\right)=2 \times 10^{-3} \mathrm{~m}^{3}$
$T=20+273=293 \mathrm{~K}$
So, the pressure is: $P=\frac{n R T}{V}=\frac{(0.545)(8.314)(293)}{2 \times 10^{-3}}=6.64 \times 10^{5}$ pascals
In mmHg :
$P=6.64 \times 10^{5}$ pascal $\left(\frac{1 \mathrm{~atm}}{1.013 \times 10^{5} \text { pascals }}\right)\left(\frac{760 \mathrm{mmHg}}{1 \mathrm{~atm}}\right)=\mathbf{5 , 0 0 0} \mathbf{~ m m H g}$

Problem 6.- Calculate the volume 3.00 moles of a gas will occupy at $24.0^{\circ} \mathrm{C}$ and 762.4 mm Hg .
Solution: $n=3$
$T=24+273=297 K$
The pressure is:
$P=762.4 \mathrm{mmHg}=762.4 \mathrm{mmHg}\left(\frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}\right)\left(\frac{1.013 \times 10^{5} \text { pascals }}{1 \mathrm{~atm}}\right)=1.016 \times 10^{5}$ pascals
And the volume is:
$V=\frac{n R T}{P}=\frac{3(8.314)(297)}{1.016 \times 10^{5}}=\mathbf{0 . 0 7 3} \mathrm{m}^{3}$

Problem 7.- What volume will 20.0 g of Argon occupy at STP?
Solution: $n=\frac{\text { mass }}{\text { molecular } \text { mass in grams }}=\frac{20 g}{40 g}=0.5$
STP stands for:
$P=1 \mathrm{~atm}=1.013 \times 10^{5}$ pascals, $T=0 C=273 \mathrm{~K}$, so the volume is:
$V=\frac{n R T}{P}=\frac{0.5(8.314)(273)}{1.013 \times 10^{5}}=\mathbf{0 . 0 1 1} \mathrm{m}^{3}$
Problem 8.- How many moles of gas would be present in a gas trapped within a 100.0 mL vessel at $25.0^{\circ} \mathrm{C}$ at a pressure of 2.50 atmospheres?

Solution: The information given:

$$
\begin{aligned}
& V=100 \mathrm{~mL}=100 \mathrm{~mL}\left(\frac{1 L}{1000 \mathrm{~mL}}\right)\left(\frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}}\right)=1 \times 10^{-4} \mathrm{~m}^{3} \\
& T=25+273=298 \mathrm{~K} \\
& P=2.50 \mathrm{~atm}=2.5 \mathrm{~atm}\left(\frac{1.013 \times 10^{5} \text { pascals }}{1 \mathrm{~atm}}\right)=2.53 \times 10^{5} \text { pascals }
\end{aligned}
$$

With these values:

$$
n=\frac{P V}{R T}=\frac{\left(2.53 \times 10^{5}\right)\left(1 \times 10^{-4}\right)}{8.314(298)}=\mathbf{0 . 0 1 0 2} \mathbf{~ m o l e s}
$$

Problem 9.- How many moles of a gas would be present in a gas trapped within a 37.0 -liter vessel at $80.00{ }^{\circ} \mathrm{C}$ at a pressure of 2.50 atm ?

Solution: $V=37 L=37 L\left(\frac{1 m^{3}}{1000 L}\right)=37 \times 10^{-3} \mathrm{~m}^{3}$

$$
\begin{aligned}
& T=80+273=353 \mathrm{~K} \\
& P=2.50 \mathrm{~atm}=2.5 \mathrm{~atm}\left(\frac{1.013 \times 10^{5} \text { pascals }}{1 \mathrm{~atm}}\right)=2.53 \times 10^{5} \text { pascals }
\end{aligned}
$$

With these values:
$n=\frac{P V}{R T}=\frac{\left(2.53 \times 10^{5}\right)\left(37 \times 10^{-3}\right)}{8.314(353)}=\mathbf{3 . 2}$ moles
Problem 10.- If the number of moles of a gas is doubled at the same temperature and pressure, will the volume increase or decrease?

Solution: It will double!

Problem 11.- What volume will 1.27 moles of helium gas occupy at STP?

Solution: $n=1.27$
STP stands for:
$P=1 \mathrm{~atm}=1.013 \times 10^{5}$ pascals,$T=0 C=273 \mathrm{~K}$, so the volume is:
$V=\frac{n R T}{P}=\frac{1.27(8.314)(273)}{1.013 \times 10^{5}}=\mathbf{0 . 0 2 8} \mathrm{m}^{3}$
Problem 12.- At what pressure would 1.50 mole of nitrogen gas at $23.0^{\circ} \mathrm{C}$ occupy 8.90 L ?
Solution: $\mathrm{n}=1.5$
$V=8.9 L=8.9 L\left(\frac{1 \mathrm{~m}^{3}}{1000 L}\right)=8.9 \times 10^{-3} \mathrm{~m}^{3}$
$T=23+273=296 K$
With these values:
$P=\frac{n R T}{V}=\frac{1.5(8.314)(296)}{8.9 \times 10^{-3}}=\mathbf{4 1 4 , 0 0 0}$ pascals
Problem 13.- What volume would 32.0 g of NO_{2} gas occupy at 3.12 atm and $18.0^{\circ} \mathrm{C}$?
Solution: The number of moles is: $n=\frac{\text { mass }}{\text { molecular mass in grams }}=\frac{32 g}{44 g}=0.727$
$T=18+273=291 K$
The pressure is: $P=3.12 \mathrm{~atm}\left(\frac{1.013 \times 10^{5} \text { pascals }}{1 \mathrm{~atm}}\right)=3.16 \times 10^{5}$ pascals
So, the volume is: $V=\frac{n R T}{P}=\frac{0.727(8.314)(291)}{3.16 \times 10^{5}}=\mathbf{0 . 0 0 5 5} \mathrm{m}^{3}$
Problem 14.- Find the volume of 2.40 mol of gas whose temperature is $50.0^{\circ} \mathrm{C}$ and whose pressure is 2.00 atm .

Solution: The number of moles is: $n=2.4$
$T=50+273=323 K$
The pressure is: $P=2 \mathrm{~atm}\left(\frac{1.013 \times 10^{5} \text { pascals }}{1 \mathrm{~atm}}\right)=2.026 \times 10^{5}$ pascals
Then, the volume is: $V=\frac{n R T}{P}=\frac{2.4(8.314)(353)}{2.026 \times 10^{5}}=\mathbf{0 . 0 3 4 7} \mathbf{m}^{\mathbf{3}}$

Problem 15.- Calculate the molecular weight of a gas if 35.44 g of the gas stored in a 7.50 L tank exerts a pressure of 60.0 atm at a constant temperature of $35.5^{\circ} \mathrm{C}$

Solution: Let us find the number of moles:
$V=7.5 L=7.5 L\left(\frac{1 m^{3}}{1000 L}\right)=7.5 \times 10^{-3} \mathrm{~m}^{3}$
$T=35.5+273=308.5 \mathrm{~K}$
$P=60 \mathrm{~atm}=60 \mathrm{~atm}\left(\frac{1.013 \times 10^{5} \text { pascals }}{1 \mathrm{~atm}}\right)=60.78 \times 10^{5}$ pascals
With these values:
$n=\frac{P V}{R T}=\frac{\left(60.78 \times 10^{5}\right)\left(7.5 \times 10^{-3}\right)}{8.314(308.5)}=\mathbf{1 7 . 8}$ moles
And the molecular weight is $35.44 \mathrm{~g} / 17.8=\mathbf{1 . 9 9}$, so it could be hydrogen.
Problem 16.- How many moles of gas are contained in a 50.0 L cylinder at a pressure of 100.0 atm and a temperature of $35.0^{\circ} \mathrm{C}$?

Solution: $V=50 L=50 L\left(\frac{1 \mathrm{~m}^{3}}{1000 L}\right)=50 \times 10^{-3} \mathrm{~m}^{3}$
$T=35+273=308 K$
$P=100 \mathrm{~atm}=100 \mathrm{~atm}\left(\frac{1.013 \times 10^{5} \text { pascals }}{1 \mathrm{~atm}}\right)=101.3 \times 10^{5}$ pascals
With these values:
$n=\frac{P V}{R T}=\frac{\left(101.3 \times 10^{5}\right)\left(50 \times 10^{-3}\right)}{8.314(308)}=\mathbf{1 9 8}$ moles
Problem 17.- Determine the number of moles of Krypton contained in a 3.25-liter gas tank at 5.80 atm and $25.5^{\circ} \mathrm{C}$. If the gas is Oxygen instead of Krypton, will the answer be the same? Why or why not?
Solution: $n=\frac{P V}{R T}=\frac{\left(5.8 \times 1.013 \times 10^{5} \text { pascals }\right)\left(3.25 \times 10^{-3} \mathrm{~m}^{3}\right)}{8.314(298.65 \mathrm{~K})}=\mathbf{0 . 7 6 9}$ moles

Oxygen at those conditions would give us the same value. Notice that the equation does not contain the mass.

Problem 18.- Determine the number of grams of carbon dioxide in a 450.6 mL tank at 1.80 atm and minus $50.5^{\circ} \mathrm{C}$. Determine the number of grams of oxygen that the same container will contain under the same temperature and pressure.

Solution: $n=\frac{P V}{R T}=\frac{\left(1.8 \times 1.013 \times 10^{5} \text { pascals }\right)\left(0.4506 \times 10^{-3} \mathrm{~m}^{3}\right)}{8.314(273.15-50.5)}=\mathbf{0 . 0 4 4 4} \mathbf{~ m o l e s}$
The mass is: $0.0444 \times 44 \mathrm{~g}=\mathbf{1 . 9 5} \mathbf{g}$
If it were oxygen, the mass would be $0.0444 \times 32=1.42 \mathrm{~g}$
Problem 19.- Determine the volume of occupied by 2.34 grams of carbon dioxide gas at STP.
Solution: $V=\frac{n R T}{p}=\frac{\left(\frac{2.34}{44}\right) 8.314(273.15)}{1.013 \times 10^{5} \text { pascals }}=\mathbf{0 . 0 0 1 1 9} \mathbf{~ m}^{3}$
Problem 20.- A sample of argon gas at STP occupies 56.2 liters. Determine the number of moles of argon and the mass in the sample.

Solution: $n=\frac{56.2}{22.4}=\mathbf{2 . 5 0 9}$
Mass $=2.509 \times 40=100.35 \mathrm{~g}$
Problem 21.- At what temperature will 0.654 moles of neon gas occupy 12.30 liters at 1.95 atmospheres?
Solution: $T=\frac{p V}{n R}=\frac{\left(1.95 \times 1.013 \times 10^{5} \text { pascals }\right)\left(12.3 \times 10^{-3}\right)}{0.654 \times 8.314}=\mathbf{4 4 6 . 8} \mathbf{K}$
Problem 22.- A 30.6 g sample of gas occupies 22.4 L at STP. What is the molecular weight of this gas?

Solution: It is $\mathbf{3 0 . 6}$
Problem 23.- A 40.0 g gas sample occupies 11.2 L at STP. Find the molecular weight of this gas.

Solution: It is $\mathbf{8 0 . 0}$
Problem 24.- A 12.0 g sample of gas occupies 19.2 L at STP. What is the molecular weight of this gas?

Solution: $n=\frac{19.2}{22.4}=0.857$, so $\mathrm{M}=12 \cdot 0 / 0.857=\mathbf{1 4}$

Problem 25.- 96.0 g. of a gas occupies 48.0 L at 700.0 mm Hg and $20.0^{\circ} \mathrm{C}$. What is its molecular weight?

Solution: $n=\frac{P V}{R T}=\frac{\left(700 / 760 \times 1.013 \times 10^{5} \text { pascals }\right)\left(48 \times 10^{-3} \mathrm{~m}^{3}\right)}{8.314(293.15 \mathrm{~K})}=\mathbf{1 . 8 3} \mathbf{~ m o l e s}$
$\mathrm{M}=96.0 / 1.83=48.98$

Problem 26.- 20.83 g . of a gas occupies 4.167 L at 79.97 kPa at $30.0^{\circ} \mathrm{C}$. What is its molecular weight?

Solution: $n=\frac{P V}{R T}=\frac{\left(79.97 \times 10^{3} \text { pascals }\right)\left(4.167 \times 10^{-3} \mathrm{~m}^{3}\right)}{8.314(313.15 \mathrm{~K})}=\mathbf{0 . 1 2 8} \mathbf{~ m o l e s}$
$\mathrm{M}=20.83 / 0.128=\mathbf{1 6 2 . 7}$
Problem 27.- At STP 3.00 liters of an unknown gas has a mass of 9.50 grams. Calculate its molar mass.

Solution: $n=\frac{3}{22.4}=0.1339$, so $\mathrm{M}=9.50 / 0.1339=70.9$
Problem 28.- At STP 0.250 liter of an unknown gas has a mass of 1.00 gram. Calculate its molar mass.

Solution: $n=\frac{0.25}{22.4}=0.0111$, so $\mathrm{M}=1 / 0.0111=\mathbf{8 9 . 6}$

Problem 29.- At STP 150.0 mL of an unknown gas has a mass of 0.250 gram. Calculate its molar mass.

Solution: $n=\frac{0.150}{22.4}=0.006696$, so $\mathrm{M}=0.25 / 0.006696=\mathbf{3 7 . 3}$

Problem 30.-1.089 g of a gas occupies 4.50 L at $20.5^{\circ} \mathrm{C}$ and 0.890 atm . What is its molar mass?
Solution: $n=\frac{P V}{R T}=\frac{\left(0.89 \times 1.013 \times 10^{5} \text { pascals }\right)\left(4.5 \times 10^{-3} \mathrm{~m}^{3}\right)}{8.314(293.65 \mathrm{~K})}=0.166 \mathrm{moles}$
So, $M=1.089 / 0.166=6.55$
Problem 31.- 0.190 g of a gas occupies 250.0 mL at STP. What is its molar mass? What gas is it? Hint - calculate molar mass of the gas.

Solution: $n=\frac{0.25}{22.4}=0.0111$, so $\mathrm{M}=0.19 / 0.0111=17 \ldots$ could be ammonia
Problem 32.- If 9.006 grams of a gas are enclosed in a 50.00 -liter vessel at 273.15 K and 2.000 atmospheres of pressure, what is the molar mass of the gas? What gas is this?

Solution: $n=\frac{P V}{R T}=\frac{\left(2 \times 1.013 \times 10^{5} \text { pascals }\right)\left(50 \times 10^{-3} \mathrm{~m}^{3}\right)}{8.314(273.15 \mathrm{~K})}=\mathbf{4 . 4 6}$ moles
$\mathrm{M}=9.006 / 4.46=\mathbf{2} \mathbf{I t}$ is hydrogen.
Problem 33.- A 50.00 -liter tank at minus $15.00^{\circ} \mathrm{C}$ contains 14.00 grams of helium gas and 10.00 grams of nitrogen gas.
a. Determine the moles of helium gas in the tank.
b. Determine the moles of nitrogen gas in the tank.
c. Determine the mole fraction of helium gas in the tank.
d. Determine the partial pressure of helium gas in the tank.
e. Determine the partial pressure of nitrogen gas in the tank.
f. Determine the total pressure of the mixture in the tank.
g. Determine the volume that the mixture will occupy at STP.

Problem 34.- Determine the number of moles of Krypton contained in a 3.25-liter gas tank at 5.80 atm and $25.5^{\circ} \mathrm{C}$. If the gas is Oxygen instead of Krypton, will the answer be the same? Why or why not?
[1 atm=101,300 pascal]
Solution: The number of moles is $n=\frac{P V}{R T}=\frac{5.8 \times 1.013 \times 10^{5} \times 0.00325}{8.314 \times 298.5}=\mathbf{0 . 7 7} \mathbf{~ m o l e s}$
The same answer if it were oxygen instead of krypton because the law is universal for all ideal gasses.

Problem 35.- A compressed cylinder of O_{2} contains 30 kg of oxygen at $\mathrm{T}=25^{\circ} \mathrm{C}$ and 10^{6} pascals. Calculate the volume of the cylinder.

Solution: We can use the ideal gas law: $\mathrm{pV}=\mathrm{nRT} \rightarrow \mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{p}}$
The number of moles is: $\mathrm{n}=\frac{30,000 \mathrm{~g}}{32 \mathrm{~g}}=937.5 \mathrm{moles}$
So the volume is:
$\rightarrow \mathrm{V}=\frac{937.5(8.314 \mathrm{~J} / \mathrm{K})(298 \mathrm{~K})}{10^{6} \mathrm{~Pa}}=\mathbf{2 . 3 2} \mathbf{m}^{\mathbf{3}}$
Problem 35a.- A compressed cylinder of O_{2} contains 6.4 kg of oxygen at $\mathrm{T}=26.85^{\circ} \mathrm{C}$ and $\mathrm{P}=6 \mathrm{~atm}$. Calculate the volume of the cylinder. [The molecular weight of oxygen is 32]

Solution: The number of moles is: $n=\frac{\text { mass }(\text { in } \operatorname{grams})}{\text { Molecular } \text { mass }}=\frac{6400}{32}=200 \mathrm{moles}$

The temperature is: $T=26.85+273.15=300 \mathrm{~K}$

The pressure is: $P=6 \mathrm{~atm}\left(\frac{1.013 \times 10^{5} \text { pascals }}{\mathrm{atm}}\right)=6.78 \times 10^{5}$ pascals,
So the volume is: $V=\frac{n R T}{P}=\frac{200 \times 8.314 \times 300}{6.078 \times 10^{5}}=\mathbf{0 . 8 2} \mathbf{~ m}^{3}$
Problem 36.- A diver releases a 1 cm -radius air bubble at a depth of 45 m (so you can consider the absolute pressure to be 5.5 atm) at a temperature of $7^{\circ} \mathrm{C}$. Calculate the radius of the bubble just before it surfaces (where the pressure is 1.0 atm) if the temperature is $17^{\circ} \mathrm{C}$.
[Volume of a sphere $=\frac{4}{3} \pi R^{3}$, where R is the radius]
Solution: The number of moles stays the same in the process, so $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$, and according to the problem:
$P_{1}=5.5 \mathrm{~atm}$
$T_{1}=7+273.15=280.15 K$
$V_{1}=\frac{4}{3} \pi R_{1}^{3}$
Notice that we are leaving the pressure in atm as those units will cancel each other.
Also:
$P_{2}=1 \mathrm{~atm}$
$T_{2}=17+273.15=290.15 \mathrm{~K}$
$V_{2}=\frac{4}{3} \pi R_{2}{ }^{3}$
So, $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \rightarrow \frac{5.5 \times \frac{4}{3} \pi R_{1}^{3}}{280.15}=\frac{1 \times \frac{4}{3} \pi R_{2}^{3}}{290.15} \rightarrow R_{2}=R_{1} \sqrt{\frac{5.5 \times 290.15}{280.15}}=1.79 \mathrm{~cm}$

