Physics I

Specific Heat

Problem 1.- You pour 25 g of milk at $25^{\circ} \mathrm{C}$ into a Styrofoam cup that contains 175 grams of coffee at $75^{\circ} \mathrm{C}$. What is the temperature of the mixture after they reach thermal equilibrium? Assume the specific heats of coffee and milk are the same and neglect the one of the cup.

Solution: The heat gained by the milk is equal to the heat lost by the coffee, so:

$$
25 g(T-25)=175 g(75-T)
$$

Where T is the final temperature of the mixture.
Solving for T :
$(T-25)=7(75-T) \rightarrow T-25=525-7 T \rightarrow 8 T=550 \rightarrow T=68.7^{\circ} \mathrm{C}$
Problem 2.- A mixture of gases is found experimentally to have a heat capacity at constant volume of $C_{v}=2 R$ per mole.
a) Calculate the value of gamma for this mixture.
b) Knowing that $P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$ calculate the final pressure of the mixture if it expands adiabatically from an initial pressure of 1 atm and volume 1 L to a final volume of 2 L .

Solution: a) Since $C_{v}=2 R$ then $C_{p}=3 R$ and $\gamma=\frac{C_{p}}{C_{v}}=\frac{3 R}{2 R}=\mathbf{1 . 5}$
b) Knowing that $P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$:
$1 \times 1^{1.5}=P_{2} \times 2^{1.5} \rightarrow P_{2}=\frac{1}{2^{1.5}}=\mathbf{0 . 3 5} \mathbf{~ a t m}$
Problem 3.- Five moles of a monoatomic gas are heated at constant volume from an initial temperature of $\mathrm{T}_{1}=300 \mathrm{~K}$ to $\mathrm{T}_{2}=500 \mathrm{~K}$. Calculate the heat necessary to do this.

Solution: Since the process happens at constant volume, we use the molar heat capacity C_{v}, which gives us:

$$
Q=n C_{v} \Delta T=n\left(\frac{3}{2} R\right) \Delta T=5\left(\frac{3}{2} 8.314\right)(500-300)=\mathbf{1 2 , 5 0 0} \mathbf{J}
$$

