Physics I

Thermal expansion

Problem 1.- You buy 15 gallons of gasoline when the temperature is $\mathrm{T}=15^{\circ} \mathrm{C}$ paying 2.50 dollars per gallon.
a) What is the difference in volume when the temperature reaches $\mathrm{T}=35^{\circ} \mathrm{C}$?
b) How much is this difference in dollars?
[β of gasoline is $950 \times 10^{-6} /{ }^{\circ} \mathrm{C}$]
Solution:
a) $\Delta V=\beta V_{o} \Delta T=\left(950 \times 10^{-6}\right)(15)\left(20^{\circ}\right)=\mathbf{0 . 2 8 5}$ gallons
b) Difference in dollars: $0.285 \times 2.5=\mathbf{0 . 7 1}$ dollars

Problem 1a.- You top-off the 25 -gallon steel gas tank of your truck when the temperature is $10^{\circ} \mathrm{C}$ and then leave the vehicle in the sun. How much gas spills if the temperature reaches $35^{\circ} \mathrm{C}$? [α of steel is $12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and β of gasoline is $950 \times 10^{-6} /{ }^{\circ} \mathrm{C}$]

Solution: The gasoline will expand by a volume:

$$
\Delta V_{\text {gasoline }}=\beta_{\text {gasoline }} V_{o} \Delta T=\left(950 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)(25 \text { gallon })\left(35^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}\right)=0.59 \text { gallons }
$$

But the tank will only expand:
$\Delta V_{\text {steel }}=\beta_{\text {steel }} V_{o} \Delta T=\left(3 \times 12 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)(25$ gallon $)\left(35^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}\right)=0.02$ gallons
So, we will spill 0.57 gallons of gasoline, around 1 dollar worth at current prices.
Note: The volume expansion coefficient β is three times as much as the linear coefficient α, so $\beta=3 \alpha$. This only applies to solids because liquids don't have a defined shape.

Problem 2.- Mercury is used in thermometers because it expands more than glass when heated, changing the length of the column according to the temperature.
A) Why is water not a good alternative to mercury?
B) Why do we need to use other kind of thermometers below $-39^{\circ} \mathrm{C}$?

Solution: A) water solidifies at $0^{\circ} \mathrm{C}$ and it has the minimum volume at $4^{\circ} \mathrm{C}$. Moreover, it could break the glass when freezing.
B) Mercury solidifies at $-39^{\circ} \mathrm{C}$.

Problem 3.- What happens to the volume of 1 gram of water when it is cooled down from $4^{\circ} \mathrm{C}$ to $1^{\circ} \mathrm{C}$?

Solution: Water expands when cooled down below $4^{\circ} \mathrm{C}$.

