Physics I

Thermodynamic Cycles

Carnot cycle efficiency $\eta=1-\frac{T_{L o w}}{T_{\text {high }}}$
Problem 1.- An ideal gas initially occupies a volume of 2 L at a pressure of 150,000 pascals. It expands isothermally to a volume of 5 L .
How much work is done in the process?
Recall that $\int_{x 1}^{x 2} \frac{d x}{x}=\ln \left(\frac{x_{2}}{x_{1}}\right)$
Problem 1a.- Calculate the work delivered by the isothermal expansion of 5.8 kg of air at $\mathrm{T}=600$ K from an initial pressure of $\mathrm{p}_{1}=8 \mathrm{~atm}$ to a final pressure of $\mathrm{p}_{2}=2 \mathrm{~atm}$.
Approximate air as an ideal gas of molecular mass 29.
Problem 2.- An ideal gas initially occupies a volume of 2 L at a pressure of 200,000 pascals. It expands at constant pressure to a volume of 10L. Then it is cooled down at constant volume until its final temperature is equal to the initial temperature.
Sketch the process in a PV diagram with units and values.
How much work is done in the process?
Problem 3.- A mixture of gasses is found experimentally to have a heat capacity at constant pressure of $C_{v}=2 R$ per mole, so $C_{p}=3 R$
Knowing that $P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$ calculate the final pressure of the mixture if it expands adiabatically from an initial pressure of 1 atm and volume 1 L to a final volume of 2 L .

Problem 4.- Draw a P-V diagram of the following cycle:
a) A 2 L volume of air initially at 2 atm expands isothermally to a final volume of 4 L .
b) The gas is then compressed at constant pressure to a final volume of 2L
c) The gas is heated at constant volume until it reaches a pressure of 2 atm again.

Problem 5.- An ideal gas initially occupies a volume of 2 L at a pressure of 200,000 pascals. It expands isothermally to a volume of 10 L .
How much work is done in the process?
$\int_{x 1}^{x 2} \frac{d x}{x}=\ln \left(\frac{x_{2}}{x_{1}}\right)$
Problem 6.- Calculate the amount of work done by air expanding from an initial temperature of 800 K and volume of $0.15 \mathrm{~m}^{3}$ to a final volume of 0.25 m 3 in an adiabatic expansion (gamma for air is 1.4)

Problem 7.- If an engine works between a maximum temperature of 900 K and a minimum of 300 K , what is the theoretical upper bound of the efficiency?

