Physics I

Thermodynamic Cycles

Carnot cycle efficiency $\eta=1-\frac{T_{L o w}}{T_{\text {high }}}$
Problem 1.- An ideal gas initially occupies a volume of 2 L at a pressure of 150,000 pascals. It expands isothermally to a volume of 5 L .
How much work is done in the process?
Recall that $\int_{x 1}^{x 2} \frac{d x}{x}=\ln \left(\frac{x_{2}}{x_{1}}\right)$
Solution: $W=\int_{V 1}^{V_{2}} p d V=\int_{V 1}^{V_{2}} \frac{P_{1} V_{1}}{V} d V=P_{1} V_{1} \ln \left(\frac{V_{2}}{V_{1}}\right)=150,000 \times 0.002 \ln (2.5)=\mathbf{2 7 5} \mathbf{J}$
Problem 1a.- Calculate the work delivered by the isothermal expansion of 5.8 kg of air at $\mathrm{T}=600$ K from an initial pressure of $\mathrm{p}_{1}=8 \mathrm{~atm}$ to a final pressure of $\mathrm{p}_{2}=2 \mathrm{~atm}$.
Approximate air as an ideal gas of molecular mass 29.
Solution: Work $=\int_{V 1}^{V 2} p d V=\int_{V 1}^{V 2} \frac{n R T}{V} d V=n R T \int_{V 1}^{V 2} \frac{d V}{V}=n R T \ln \left(\frac{V_{2}}{V_{1}}\right)$

The problem indicates that the final pressure is $1 / 4$ the initial pressure, but this is an ideal gas at constant temperature, so the final volume is 4 times the initial volume.

The number of moles is: $n=\frac{\text { mass }(\text { in } \text { grams })}{\text { Molecular mass }}=\frac{5800}{29}=200 \mathrm{moles}$
The work done is then: Work $=n R T \ln \left(\frac{V_{2}}{V_{1}}\right)=200 \times 8.314 \times 600 \ln (4)=\mathbf{1 . 3 8} \mathbf{~ M J}$
Problem 2.- An ideal gas initially occupies a volume of 2 L at a pressure of 200,000 pascals. It expands at constant pressure to a volume of 10 L . Then it is cooled down at constant volume until its final temperature is equal to the initial temperature.
Sketch the process in a PV diagram with units and values.
How much work is done in the process?
Solution: The figure sketches the process. Notice that the initial point A and the final point C have the same temperature and so they belong to the isothermal shown as a dotted line. The isothermal curve is a hyperbola, a conic section.

The work is done in the A to B part:
$W=$ pressure $\times \Delta V=200,000 \times 0.008=\mathbf{1 , 6 0 0} \mathbf{J}$
Problem 3.- A mixture of gasses is found experimentally to have a heat capacity at constant pressure of $C_{v}=2 R$ per mole, so $C_{p}=3 R$
Knowing that $P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$ calculate the final pressure of the mixture if it expands adiabatically from an initial pressure of 1 atm and volume 1 L to a final volume of 2 L .

Solution: Knowing that $P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$
$1 \times 1^{1.5}=P_{2} \times 2^{1.5} \rightarrow P_{2}=\frac{1}{2^{1.5}}=\mathbf{0 . 3 5} \mathbf{~ a t m}$
Problem 4.- Draw a P-V diagram of the following cycle:
a) A 2 L volume of air initially at 2 atm expands isothermally to a final volume of 4 L .
b) The gas is then compressed at constant pressure to a final volume of 2 L
c) The gas is heated at constant volume until it reaches a pressure of 2 atm again.

Solution:

Problem 5.- An ideal gas initially occupies a volume of 2 L at a pressure of 200,000 pascals. It expands isothermally to a volume of 10 L .
How much work is done in the process?
$\int_{x 1}^{x 2} \frac{d x}{x}=\ln \left(\frac{x_{2}}{x_{1}}\right)$
Solution: $W=\int_{V 1}^{V 2} p d V=\int_{V 1}^{V_{2}} \frac{P_{1} V_{1}}{V} d V=P_{1} V_{1} \ln \left(\frac{V_{2}}{V_{1}}\right)=200,000 \times 0.002 \ln (5)=\mathbf{6 4 4} \mathbf{~ J}$
Problem 6.- Calculate the amount of work done by air expanding from an initial temperature of 800 K and volume of $0.15 \mathrm{~m}^{3}$ to a final volume of 0.25 m 3 in an adiabatic expansion (gamma for air is 1.4)

Solution: let's first find the initial pressure

$$
P_{1} V_{1}=n R T_{1} \rightarrow P_{1}=\frac{n R T_{1}}{V_{1}}
$$

And the final pressure

$$
P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \rightarrow P_{2}=P_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}
$$

The work done is $\int_{V 1}^{V 2} p d V=\int_{V 1}^{V 2} \frac{p_{1} V_{1}^{\gamma}}{V^{\gamma}} d V=p_{1} V_{1}^{\gamma} \int_{V 1}^{V 2} \frac{d V}{V^{\gamma}}=\left.\frac{p_{1} V_{1}^{\gamma} V^{-\gamma+1}}{-\gamma+1}\right|_{V 1} ^{V 2}$
$=\frac{p_{1} V_{1}^{\gamma} V_{2}^{-\gamma+1}}{-\gamma+1}-\frac{p_{1} V_{1}^{\gamma} V_{1}^{-\gamma+1}}{-\gamma+1}=\frac{p_{1} V_{1}-p_{2} V_{2}}{\gamma-1}=\frac{\frac{n R T_{1}}{V_{1}}\left[1-\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}\right]}{\gamma-1}$
$=\frac{\frac{n R T_{1}}{V_{1}}\left[1-\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}\right]}{\gamma-1}=\frac{\frac{n 8.314 \times 800}{0.15}\left[1-\left(\frac{0.15}{0.25}\right)^{0.4}\right]}{0.4}=\mathbf{2 0 , 5 0 0} \mathbf{n}$ joule
Problem 7.- If an engine works between a maximum temperature of 900 K and a minimum of 300 K , what is the theoretical upper bound of the efficiency?

Solution: $\eta=1-\frac{300}{900}=67 \%$

