Physics I

Falling Objects

In case of free fall, the acceleration in the vertical direction is $a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
y=v_{y 1} t+\frac{1}{2} a_{y} t^{2} \quad v_{y 2}=v_{y 1}+a_{y} t \quad v_{y 2}{ }^{2}=v_{y 1}^{2}+2 a_{y} y \quad\left\langle v_{y}\right\rangle=\frac{v_{y 1}+v_{y 2}}{2}=\frac{y}{t}
$$

Problem 1.- A stone is thrown straight upwards with an initial speed of $15 \mathrm{~m} / \mathrm{s}$ at the edge of a cliff whose height is $\mathrm{h}=65 \mathrm{~m}$. Calculate the time it will take for the stone to reach the bottom of the cliff.

Problem 2.- A stone is thrown vertically upwards with an initial velocity of $25 \mathrm{~m} / \mathrm{s}$. Determine:
i) The maximum height reached and
ii) How long it takes to get there.

Problem 3.- Neglecting air resistance, estimate the time it would take a penny to fall straight down from the top of the Empire State Building (380 m high), and its velocity just before hitting the ground. Assume zero initial velocity.

Problem 3a.- Neglecting air resistance, estimate how long it would take a penny to fall straight down from the top of the Eiffel Tower (324 m high), and its velocity just before hitting the ground. Assume the initial velocity to be zero.

Problem 4.- A stone is thrown vertically upwards with an initial velocity of $29.6 \mathrm{~m} / \mathrm{s}$. Determine its velocity when it reaches a height of 18 m .

Problem 5.- Two projectiles are shot straight up with initial velocities of $30 \mathrm{~m} / \mathrm{s}$, but with 1 s of delay between them. At what height will the projectiles hit each other?

Problem 6.- To measure the height of a building you drop a marble from the roof and measure the time it takes to hit the ground. Calculate the height of the building if the time is $t=4.95 \mathrm{~s}$

Problem 7.- In an experiment you determine that at a certain point the velocity of an object is $1.5 \mathrm{~m} / \mathrm{s}$. Knowing that its initial velocity was zero calculate:
a) How long it has been falling (time, t).
b) How much it has fallen (distance, y).

