Physics I

Falling Objects

In case of free fall, the acceleration in the vertical direction is $\mathrm{a}_{\mathrm{y}}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
y=v_{y 1} t+\frac{1}{2} a_{y} t^{2} \quad v_{y 2}=v_{y 1}+a_{y} t \quad v_{y 2}{ }^{2}=v_{y 1}^{2}+2 a_{y} y \quad\left\langle v_{y}\right\rangle=\frac{v_{y 1}+v_{y 2}}{2}=\frac{y}{t}
$$

Problem 1.- A stone is thrown straight upwards with an initial speed of $15 \mathrm{~m} / \mathrm{s}$ at the edge of a cliff whose height is $\mathrm{h}=65 \mathrm{~m}$. Calculate the time it will take for the stone to reach the bottom of the cliff.

Solution: There are several ways to solve this problem, for example we could use the equation $y=v_{y 1} t+\frac{1}{2} a_{y} t^{2}$ since we already know $y=-65 m, v_{y 1}=15 \mathrm{~m} / \mathrm{s}$ and $a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ then we get $-65=15 t-4.9 t^{2}$, which is a quadratic equation, that we can solve using the well know quadratic formula $4.9 t^{2}-15 t-65=0 \rightarrow t=\frac{-(-15) \pm \sqrt{15^{2}-4(4.9)(-65)}}{2(4.9)}=5.5 \mathrm{~s}$

An alternative approach would be to find $v_{y 2}$ first and then using that in the equation $v_{y 2}=v_{y 1}+a_{y} t$ to calculate the time.

Problem 2.- A stone is thrown vertically upwards with an initial velocity of $25 \mathrm{~m} / \mathrm{s}$. Determine:
i) The maximum height reached and
ii) How long it takes to get there.

Solution: At the maximum height reached the velocity is zero for an instant, so knowing that $\mathrm{v}_{2}=0$ we have:
i) $\mathrm{v}_{2}{ }^{2}=v_{1}{ }^{2}+2 a x \rightarrow 0^{2}=25^{2}+2(-9.8) x \rightarrow x=\frac{25^{2}}{2 \times 9.8}=\mathbf{3 2} \mathbf{~ m}$
ii) $\mathrm{v}_{2}=v_{1}+a t \rightarrow 0=25+(-9.8) t \rightarrow t=\frac{25}{9.8}=\mathbf{2 . 6} \mathbf{~ s}$

Problem 3.- Neglecting air resistance, estimate the time it would take a penny to fall straight down from the top of the Empire State Building (380 m high), and its velocity just before hitting the ground. Assume zero initial velocity.

Solution: First, let us find the time:
$380=v_{1} t+\frac{1}{2} a t^{2}=\frac{1}{2} 9.8 t^{2} \rightarrow t=\sqrt{\frac{380}{4.9}}=\mathbf{8 . 8 ~ s}$
To find the final velocity:
$v_{2}=v_{1}+a t=9.8 \times 8.8=\mathbf{8 6} \mathbf{~ m} / \mathbf{s}$
Problem 3a.- Neglecting air resistance, estimate how long it would take a penny to fall straight down from the top of the Eiffel Tower (324 m high), and its velocity just before hitting the ground. Assume the initial velocity to be zero.

Solution: Using the equation $x=v_{1} t+\frac{1}{2} a t^{2}$ we get:
$-324=0 \mathrm{t}+\frac{1}{2}(-9.8) \mathrm{t}^{2} \rightarrow t=\sqrt{\frac{324 \times 2}{9.8}}=8.1 \mathrm{~s}$

And the velocity will be $\mathrm{v}_{2}=\mathrm{v}_{1}+\mathrm{at}=0 \times 8.1+(-9.8) \times 8.1=\mathbf{- 8 0} \mathbf{~ m} / \mathrm{s}$
Problem 4.- A stone is thrown vertically upwards with an initial velocity of $29.6 \mathrm{~m} / \mathrm{s}$. Determine its velocity when it reaches a height of 18 m .

Solution: We use $v_{2}{ }^{2}=v_{1}^{2}+2 a x$ to solve the problem:
$v_{2}^{2}=29.6^{2}+2(-9.8)(18) \rightarrow v_{2}=\mathbf{2 3} \mathbf{~ m} / \mathrm{s}$
Problem 5.- Two projectiles are shot straight up with initial velocities of $30 \mathrm{~m} / \mathrm{s}$, but with 1 s of delay between them. At what height will the projectiles hit each other?
Solution: We use the equation: $x=v_{1} t+\frac{1}{2} a t^{2}$
The height of the first projectile will be: $x=30 t-4.9 t^{2}$
The height of the second projectile will be: $x=30(t-1)-4.9(t-1)^{2}$
Since the heights should be the same, we get:
$30 t-4.9 t^{2}=30(t-1)-4.9(t-1)^{2}$
Solving for t :
$30 t-4.9 t^{2}=30 t-30-4.9\left(t^{2}-2 t+1\right)$
$0=-30-4.9(-2 t+1)$
$t=3.56 \mathrm{~s}$
Using this time we find the height: $x=30 t-4.9 t^{2}=30 \times 3.56-4.9 \times 3.56^{2}=44.7 \mathrm{~m}$

Alternative Solution: Notice that when the two projectiles collide their velocities will be equal in magnitude, but in opposite directions. You can tell that is the case if you recall that $v_{2}^{2}=v_{1}^{2}+2 a x$, so at the point of collision:
$v_{2 \text {-first_particle }}=-v_{2 \text {-second_particle }}$
Now using the equation $v_{2}=v_{1}+a t$ we can write:
$30-9.8 t=-[30-9.8(t-1)]$
And solving for t we get: $30-9.8 t=-30+9.8 t-9.8 \rightarrow 19.6 t=69.8 \rightarrow t=3.56$
And the height is then: $x=v_{1} t+\frac{1}{2} a t^{2}=30 \times 3.56-\frac{1}{2} 9.8 \times 3.56^{2}=44.7 \mathrm{~m}$
Problem 6.- To measure the height of a building you drop a marble from the roof and measure the time it takes to hit the ground. Calculate the height of the building if the time is $\mathrm{t}=4.95 \mathrm{~s}$

Solution: Since we neglect air resistance, this is a case of free fall. The equation that describes the position is: $\mathrm{y}=v_{1 y} t+\frac{1}{2} a_{y} t^{2}$
With $\mathrm{t}=4.95$ s we get: $\mathrm{y}=v_{1 y} t+\frac{1}{2} a_{y} t^{2}=(0)(4.95)+\frac{1}{2}(-9.8)(4.95)^{2}=\mathbf{- 1 2 0} \mathbf{~ m}$

Problem 7.- In an experiment you determine that at a certain point the velocity of an object is $1.5 \mathrm{~m} / \mathrm{s}$. Knowing that its initial velocity was zero calculate:
a) How long it has been falling (time, t).
b) How much it has fallen (distance, y).

Solution:

a) $v_{2}=v_{1}+(-9.8) t \rightarrow t=\frac{1.5}{9.8}=\mathbf{0 . 1 5} \mathbf{~ s}$
b) $v_{2}{ }^{2}=v_{1}{ }^{2}+2(-9.8) y \rightarrow y=\frac{v_{2}{ }^{2}-v_{1}{ }^{2}}{2(9.8)}=\frac{1.5^{2}}{2(9.8)}=\mathbf{0 . 1 1 m}$

