## Physics I

## More kinematics problems

Problem 1.- A passenger in a cruise ship that travels at $1 \mathrm{~m} / \mathrm{s}$ in steady waters climb stairs at a speed of $0.5 \mathrm{~m} / \mathrm{s}$ with respect to the ship. The stairs make an angle of $45^{\circ}$ over the horizontal and points in the same direction as the ship motion, as shown below. What is the velocity of the passenger?


Problem 2.- The velocity of an object in a horizontal plane is given by the function:
$\vec{v}=(-2,4 t)$
The position of the object at $\mathrm{t}=0$ is $\boldsymbol{r}=(1.5,3)$.
a) Find the instantaneous position and acceleration.
b) Make a graph of the trajectory and describe it.
c) Calculate the average speed between 0 and 2 seconds.
d) Find the tangential and radial accelerations at $\mathrm{t}=1$ second.
e) Find the average acceleration and velocity between 0 and 1 second.
f) If a second object has a velocity $\vec{v}=(-2,4) \mathrm{m} / \mathrm{s}$ and at $\mathrm{t}=0$ is at the origin of coordinates, what is its trajectory? And, will it collide with the first object?
g) Graph the position, velocity, and acceleration components of each object.

Problem 3.- A car A is traveling along a highway towards the east at a constant velocity $35 \mathrm{~m} / \mathrm{s}$. Another car B is entering the highway by a ramp pointing $10^{\circ}$ north of east at a speed $v$. The point marked X in the figure is 350 m from A .
Using a coordinate system $\mathrm{x}-\mathrm{y}$ for east-north, calculate how the distance between the cars changes over time and find the safe values of $v$ that will avoid a collision.


Problem 4.- A car rotates 1.5 revolutions while it slides until it stops. Initially, its center of mass was moving at $15 \mathrm{~m} / \mathrm{s}$, but due to friction with the ice, its speed reduced at a rate of $1.5 \mathrm{~m} / \mathrm{s}^{2}$. Seen from above, the car rotated clockwise. Find its average angular velocity during the slide.


Problem 5.- An axe hits a $\log$ with initial velocity $\mathrm{v}_{0}$. The deceleration produced by the wood can be described by the function $\mathrm{a}=-\mathrm{kx}^{3}$. Calculate how deep the axe will penetrate in the wood.


