Physics I

Velocity Calculus

Definition of velocity in one dimension: $v=\frac{d x}{d t}$
Definition of acceleration in one dimension: $a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}$
Problem 1.- A satellite in polar orbit moves towards the north at $8,550 \mathrm{~m} / \mathrm{s}$ when it collides with another satellite in equatorial orbit, which at that point was moving towards the east at $8,250 \mathrm{~m} / \mathrm{s}$. Calculate the speed of the second satellite with respect to the first.

Problem 2.- An oil droplet of mass m is falling in air and experiences a drag force equal to $-b v$ where b is a constant proportional to the viscosity of air. Calculate its terminal velocity and its kinetic energy when that velocity is reached.
[Ignore buoyancy]
Problem 3.- A person wants to cross a river with a motorboat that has a speed of $5.5 \mathrm{~m} / \mathrm{s}$, however, the water current has a speed of $3.3 \mathrm{~m} / \mathrm{s}$. Calculate the angle needed to get straight to the other side.

Problem 4.- A projectile with initial velocity v_{o} enters a viscous fluid where the acceleration is given by: $a=-k v^{2}$, find the velocity as a function of time.

Useful integral: $\int \frac{d x}{x^{2}}=-\frac{1}{x}+C$
Problem 5.- An object dropped on Titan (Saturn's largest moon) is attracted to the surface with an acceleration equal to: $a=g_{\text {Titan }}-k v$
Where $g_{\text {Titan }}=1.35 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the acceleration due to gravity and $k=0.033 \mathrm{~s}^{-1}$ is a resistance due to the viscosity of Titan's dense atmosphere.

Find the terminal velocity of the object.

Problem 6.- A small object falls with initial velocity $v_{o}=1.5 \mathrm{~m} / \mathrm{s}$ in a viscous fluid where the acceleration is given by: $a=g-25 v$, find the terminal velocity and sketch the velocity as a function of time.

Problem 7.- If the position of a 2.5 kg particle is described by the vector:

$$
\vec{r}=(t, 5 \sin t)
$$

Find the net force acting on the particle.
Problem 8.- A particle moves in a straight line following the equation:

$$
x=8 t^{2}+5 t+1
$$

Determine the position, velocity, and acceleration at $\mathrm{t}=2.0 \mathrm{~s}$.
Problem 9.- A particle follows a trajectory described by the equation:
$x(t)=25 t^{3}+5 t^{2}+20$
Where t is the time in seconds, find the velocity and acceleration at $\mathrm{t}=2$ seconds.

Problem 10.- A particle has a velocity described by the equation:
$\mathrm{v}(\mathrm{t})=5 \mathrm{t}^{3}$

Where t is the time in seconds, find the displacement from $t_{1}=1$ to $t_{2}=5$ seconds
Problem 11.- A particle follows a trajectory described by the equation:
$x(t)=1.5 t^{3}+0.5 t+1$

Where t is the time in seconds, find the velocity and acceleration as a function of time.
Problem 12.- The acceleration of a falling object in a viscous fluid is given by $a=A e^{-b t}$, calculate the velocity as a function of time if the initial velocity is V_{o}

Problem 13.- A particle follows a trajectory described by the equation $x=5+8 t-t^{2}$
a) Calculate the instantaneous velocity of the particle.
b) Find at what time the velocity is zero.
c) Using the time calculated in (b) calculate the maximum value of x.

Problem 14.- The position of a particle is given by $x=10 \mathrm{t}^{3}+3, y=5 \mathrm{t}^{2}-14 \mathrm{t}$, where x and y are in meters and t is in seconds. Find the instantaneous acceleration of the particle at $t=2$ seconds.

Problem 15.- The position of a particle is given by $x=8 t+3, y=9 t^{2}-14 t$. Find the average velocity of the particle between $\mathrm{t}=2 \mathrm{~s}$ and $\mathrm{t}=5 \mathrm{~s}$.

Problem 16.- A particle follows a trajectory described by the equation:
$x(t)=\frac{A}{t^{2}+b}$
Find the velocity as a function of time.

