Physics I

Velocity Calculus

Definition of velocity in one dimension: $v=\frac{d x}{d t}$
Definition of acceleration in one dimension: $a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}$
Problem 1.- A satellite in polar orbit moves towards the north at $8,550 \mathrm{~m} / \mathrm{s}$ when it collides with another satellite in equatorial orbit, which at that point was moving towards the east at $8,250 \mathrm{~m} / \mathrm{s}$. Calculate the speed of the second satellite with respect to the first.

Solution: The two vectors can be written as components assuming east to be the positive x -axis and north the positive y-axis:

$$
\begin{aligned}
& \vec{V}_{\text {satelite } A}=(0,8550) \\
& \vec{V}_{\text {satellite } B}=(8250,0)
\end{aligned}
$$

To find the relative velocity we subtract one vector from the other:

$$
\vec{V}_{\text {satellite } B}-\vec{V}_{\text {satellite } A}=(8250,-8550)
$$

The speed is then: $\left|\vec{V}_{\text {satellite } B}-\vec{V}_{\text {satellite } A}\right|=\sqrt{8250^{2}+8550^{2}}=\mathbf{1 1 , 9 0 0 m} / \mathbf{s}$

Problem 2.- An oil droplet of mass m is falling in air and experiences a drag force equal to -bv where b is a constant proportional to the viscosity of air.
Calculate its terminal velocity and its kinetic energy when that velocity is reached.
[Ignore buoyancy]
Solution: Terminal velocity will be reached when the net force is zero, which is when the weight and the drag force are equal:
$\mathrm{mg}=\mathrm{bv} \rightarrow v=\frac{m g}{b}$
At that point the kinetic energy is: $K . E .=\frac{1}{2} m v^{2}=\frac{m^{3} g^{2}}{2 b^{2}}$

Problem 3.- A person wants to cross a river with a motorboat that has a speed of $5.5 \mathrm{~m} / \mathrm{s}$, however, the water current has a speed of $3.3 \mathrm{~m} / \mathrm{s}$. Calculate the angle needed to get straight to the other side.

Solution: The addition of the boat velocity plus the water velocity should give a velocity directly across the river, so the vectors will form a right triangle:

The angle can be calculated from trigonometry:
$\sin \theta=\frac{3.3 m / s}{5.5 m / s}=0.6 \rightarrow \theta=\sin ^{-1}(0.6)=\mathbf{3 7}^{\circ}$

Problem 4.- A projectile with initial velocity v_{o} enters a viscous fluid where the acceleration is given by: $a=-k v^{2}$, find the velocity as a function of time.

Useful integral: $\int \frac{d x}{x^{2}}=-\frac{1}{x}+C$

Solution: The acceleration is defined as the derivative of the velocity with respect to time, so:
$\frac{d v}{d t}=-k v^{2}$
To solve the problem, we separate variables: Velocity on one side and time on the other:
$\frac{d v}{v^{2}}=-k d t$

And now we integrate:

$$
-\frac{1}{v}+C=-k t \rightarrow v=\frac{1}{C+k t}
$$

The initial condition allows us to find the value of C :
$v_{o}=\frac{1}{C+k(0)} \rightarrow C=\frac{1}{v_{o}}$
So, the velocity is given by:
$v=\frac{v_{o}}{1+k v_{o} t}$
Problem 5.- An object dropped on Titan (Saturn's largest moon) is attracted to the surface with an acceleration equal to: $a=g_{\text {Titan }}-k v$
Where $g_{\text {Titan }}=1.35 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the acceleration due to gravity and $k=0.033 \mathrm{~s}^{-1}$ is a resistance due to the viscosity of Titan's dense atmosphere.

Find the terminal velocity of the object.
Solution: If terminal velocity is reached the acceleration is zero, so:
$0=g_{\text {Titan }}-k v$
So, the velocity is: $v=\frac{g_{T i t a n}}{k}=\frac{1.35 \mathrm{~m} / \mathrm{s}^{2}}{0.033 / \mathrm{s}}=\mathbf{4 1} \mathbf{~ m} / \mathrm{s}$

Problem 6.- A small object falls with initial velocity $v_{o}=1.5 \mathrm{~m} / \mathrm{s}$ in a viscous fluid where the acceleration is given by: $a=g-25 v$, find the terminal velocity and sketch the velocity as a function of time.

Solution: The terminal velocity will be reached when the acceleration is zero, so:
$a=g-25 v_{\text {terminal }}=0 \rightarrow v_{\text {terminal }}=\frac{g}{25}=0.392 \mathrm{~m} / \mathrm{s}$

Problem 7.- If the position of a 2.5 kg particle is described by the vector:

$$
\vec{r}=(t, 5 \sin t)
$$

Find the net force acting on the particle.
Solution: We find the acceleration:

$$
\begin{aligned}
& \vec{r}=(t, 5 \sin t) \\
& \vec{v}=\frac{d \vec{r}}{d t}=(1,5 \cos t) \\
& \vec{a}=\frac{d \vec{v}}{d t}=(0,-5 \sin t)
\end{aligned}
$$

And the force is:

$$
\vec{F}=m \vec{a}=(0,-12.5 \sin t)
$$

Problem 8.- A particle moves in a straight line following the equation:

$$
x=8 t^{2}+5 t+1
$$

Determine the position, velocity, and acceleration at $\mathrm{t}=2.0 \mathrm{~s}$.
Solution:
a) $x=8 t^{2}+5 t+1=8 \times 2^{2}+5 \times 2+1=43$
b) $v=\frac{d x}{d t}=16 t+5=16 \times 2+5=37$
c) $a=\frac{d v}{d t}=\mathbf{1 6}$

Problem 9.- A particle follows a trajectory described by the equation:
$x(t)=25 t^{3}+5 t^{2}+20$
Where t is the time in seconds, find the velocity and acceleration at $t=2$ seconds.
Solution:
$v(t)=\frac{d x}{d t}=75 t^{2}+10 t \rightarrow v(2)=\mathbf{3 2 0} \mathbf{~ m} / \mathrm{s}$

$$
a=\frac{d v}{d t}=150 t+10 \rightarrow a(2)=\mathbf{3 1 0} \mathbf{~ m} / \mathrm{s}^{2}
$$

Problem 10.- A particle has a velocity described by the equation:
$\mathrm{v}(\mathrm{t})=5 \mathrm{t}^{3}$
Where t is the time in seconds, find the displacement from $t_{1}=1$ to $t_{2}=5$ seconds

Solution:

$x=\int v d t=\int_{1}^{5} 5 t^{3} d t=\left.\frac{5 t^{4}}{4}\right|_{1} ^{5}=\frac{5 \times 5^{4}}{4}-\frac{5 \times 1^{4}}{4}=\mathbf{7 8 0} \mathbf{~ m}$
Problem 11.- A particle follows a trajectory described by the equation:

$$
x(t)=1.5 t^{3}+0.5 t+1
$$

Where t is the time in seconds, find the velocity and acceleration as a function of time.

Solution:

$$
\begin{aligned}
& x(t)=1.5 t^{3}+0.5 t+1 \\
& v(t)=4.5 t^{2}+0.5 \\
& a(t)=9 t
\end{aligned}
$$

Problem 12.- The acceleration of a falling object in a viscous fluid is given by $\mathrm{a}=\mathrm{Ae} \mathrm{e}^{-\mathrm{bt}}$, calculate the velocity as a function of time if the initial velocity is V_{o}
Solution: By definition $a=\frac{d v}{d t}$, so: $\frac{d v}{d t}=A e^{-b t}$ and integrating:
$\int d v=\int A e^{-b t} d t \rightarrow v=\frac{A e^{-b t}}{-b}+C$
Now we use the initial condition to find the constant:
$v_{o}=\frac{A e^{-b(0)}}{-b}+C \rightarrow C=v_{o}+\frac{A}{b}$, so the solution is:
$v=\frac{A e^{-b t}}{-b}+v_{o}+\frac{A}{b}$
$v=v_{o}+\frac{A}{b}\left(1-e^{-b t}\right)$

Problem 13.- A particle follows a trajectory described by the equation $x=5+8 t-t^{2}$
a) Calculate the instantaneous velocity of the particle.
b) Find at what time the velocity is zero.
c) Using the time calculated in (b) calculate the maximum value of x.

Solution:

a) $v=\frac{d x}{d t}=8-2 t$
b) $v=0 \rightarrow 8-2 t=0 \rightarrow t=4$
c) $\left.x\right|_{t=4}=5+8 \times 4-4^{2}=21$

Problem 14.- The position of a particle is given by $x=10 \mathrm{t}^{3}+3, y=5 \mathrm{t}^{2}-14 \mathrm{t}$, where x and y are in meters and t is in seconds. Find the instantaneous acceleration of the particle at $t=2$ seconds.

Solution: To find the acceleration we derive twice:
$a_{x}=\frac{d^{2} x}{{d t^{2}}^{2}}=\frac{d^{2}}{{d t^{2}}^{2}}\left(10 t^{3}+3\right)=60 \mathrm{t}=\mathbf{1 2 0} \mathbf{~ m} / \mathbf{s}^{2}$
$a_{y}=\frac{d^{2} y}{\mathrm{dt}^{2}}=\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}}\left(5 \mathrm{t}^{2}-14 \mathrm{t}\right)=\mathbf{1 0} \mathbf{~ m} / \mathbf{s}^{2}$

Problem 15.- The position of a particle is given by $x=8 t+3, y=9 t^{2}-14 t$. Find the average velocity of the particle between $t=2 \mathrm{~s}$ and $\mathrm{t}=5 \mathrm{~s}$.

Solution: We find the displacement vector and divide by the time to get the average velocity:
$\Delta \mathrm{x}=x(5)-x(2)=8 \times 5+3-(8 \times 2+3)=24$
$\Delta \mathrm{y}=y(5)-y(2)=9 \times 5^{2}-14 \times 5-\left(9 \times 2^{2}-14 \times 2\right)=147$
$\vec{V}=\left(\frac{24}{3}, \frac{147}{3}\right)=(8,49)$
Problem 16.- A particle follows a trajectory described by the equation:
$x(t)=\frac{A}{t^{2}+b}$
Find the velocity as a function of time.
Solution: Using the definition of instantaneous velocity:
$\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}} \frac{A}{t^{2}+b}=-\frac{2 A t}{\left(t^{2}+b\right)^{2}}$

