
Physics I 

Velocity Calculus 

 

Definition of velocity in one dimension: 
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Problem 1.- A satellite in polar orbit moves towards the north at 8,550 m/s when it collides with 

another satellite in equatorial orbit, which at that point was moving towards the east at 8,250 m/s. 

Calculate the speed of the second satellite with respect to the first. 

 

Solution: The two vectors can be written as components assuming east to be the positive x-axis 

and north the positive y-axis: 
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To find the relative velocity we subtract one vector from the other: 
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Problem 2.- An oil droplet of mass m is falling in air and experiences a drag force equal to –bv 

where b is a constant proportional to the viscosity of air.  

Calculate its terminal velocity and its kinetic energy when that velocity is reached. 

[Ignore buoyancy] 

 

Solution: Terminal velocity will be reached when the net force is zero, which is when the weight 

and the drag force are equal: 
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At that point the kinetic energy is: 
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Problem 3.- A person wants to cross a river with a motorboat that has a speed of 5.5 m/s, 

however, the water current has a speed of 3.3 m/s. Calculate the angle needed to get straight to 

the other side. 

 
Solution: The addition of the boat velocity plus the water velocity should give a velocity directly 

across the river, so the vectors will form a right triangle: 

 

 
 

The angle can be calculated from trigonometry: 
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Problem 4.- A projectile with initial velocity ov  enters a viscous fluid where the acceleration is 

given by: 2
kva −= , find the velocity as a function of time. 
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Solution: The acceleration is defined as the derivative of the velocity with respect to time, so: 
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To solve the problem, we separate variables: Velocity on one side and time on the other: 
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And now we integrate: 
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The initial condition allows us to find the value of C: 
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So, the velocity is given by:  
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Problem 5.- An object dropped on Titan (Saturn’s largest moon) is attracted to the surface with 

an acceleration equal to: Titana g kv= −   

Where Titan 2
1.35

m
g

s
=  is the acceleration due to gravity and 1033.0 −

= sk  is a resistance due to 

the viscosity of Titan’s dense atmosphere.  

 

Find the terminal velocity of the object. 

 

Solution: If terminal velocity is reached the acceleration is zero, so: 

 

Titan0 g kv= −  

So, the velocity is: ===
s

sm

k

g
v Ti

/033.0

/35.1 2

tan 41 m/s 

 

Problem 6.- A small object falls with initial velocity ov =1.5m/s in a viscous fluid where the 

acceleration is given by: vga 25−= , find the terminal velocity and sketch the velocity as a 

function of time.  

 

Solution: The terminal velocity will be reached when the acceleration is zero, so: 
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Problem 7.- If the position of a 2.5 kg particle is described by the vector: 
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Find the net force acting on the particle. 

 

Solution: We find the acceleration: 

 

)sin5,( ttr =
�

 

)cos5,1( t
dt

rd
v ==

�

�

 

)sin5,0( t
dt

vd
a −==

�

�

 

 

And the force is: 
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Problem 8.- A particle moves in a straight line following the equation: 
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Determine the position, velocity, and acceleration at t = 2.0 s. 

 

Solution:  
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Problem 9.- A particle follows a trajectory described by the equation: 
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Where t is the time in seconds, find the velocity and acceleration at t=2 seconds. 

 

Solution:  
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Problem 10.- A particle has a velocity described by the equation: 
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Where t is the time in seconds, find the displacement from 1t1 =  to 5t 2 = seconds 

 

Solution:  
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Problem 11.- A particle follows a trajectory described by the equation: 
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Where t is the time in seconds, find the velocity and acceleration as a function of time. 

 

Solution: 
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Problem 12.- The acceleration of a falling object in a viscous fluid is given by a=Ae-bt, calculate 

the velocity as a function of time if the initial velocity is Vo 

Solution: By definition 
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Now we use the initial condition to find the constant: 
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Problem 13.- A particle follows a trajectory described by the equation 285 ttx −+=  

a) Calculate the instantaneous velocity of the particle. 

b) Find at what time the velocity is zero. 

c) Using the time calculated in (b) calculate the maximum value of x. 

 

Solution:  
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Problem 14.- The position of a particle is given by x=10t3+3, y=5t2-14t, where x and y are in 

meters and t is in seconds. Find the instantaneous acceleration of the particle at t=2 seconds. 

 

Solution: To find the acceleration we derive twice: 
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Problem 15.- The position of a particle is given by x=8t+3, y=9t2-14t. Find the average velocity 

of the particle between t=2s and t=5s. 

 

Solution: We find the displacement vector and divide by the time to get the average velocity: 
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Problem 16.- A particle follows a trajectory described by the equation: 
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Find the velocity as a function of time. 

 

Solution: Using the definition of instantaneous velocity: 
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