Physics I

Constant Acceleration

Equations for constant acceleration in 1 dimension

$$
x=v_{1} t+\frac{1}{2} a t^{2} \quad v_{2}=v_{1}+a t \quad v_{2}^{2}=v_{1}^{2}+2 a x \quad\langle v\rangle=\frac{v_{1}+v_{2}}{2}=\frac{x}{t}
$$

Problem 1.- In the $100-\mathrm{m}$ race an athlete accelerates uniformly from rest to his top speed of $\mathrm{v}_{2}=10 \mathrm{~m} / \mathrm{s}$ in the first $\mathrm{x}=15 \mathrm{~m}$ as shown in the figure.
a) Find his acceleration in the first 15 m .
b) Find the time it takes to cover those first 15 m .

Problem 2.- If we could neglect air resistance and other secondary effects, how long would it take for a bullet fired straight up with an initial velocity of $350 \mathrm{~m} / \mathrm{s}$ to hit the shooter?

Problem 3.- You dangle your watch from a thin piece of string while the jetliner you are in accelerates for takeoff. Calculate the acceleration if the string makes an angle of 35° with respect to the vertical.

Problem 4.- A rocket needs to reach a speed of $8,000 \mathrm{~m} / \mathrm{s}$ starting from rest.
Assuming a constant acceleration of $25 \mathrm{~m} / \mathrm{s}^{2}$ calculate:
i) The time it will take to reach that velocity
ii) The distance covered in that time

Problem 5.- A plane on an aircraft carrier has only 122 m to accelerate on take-off. How much must be the acceleration (assumed constant) if it has to reach $195 \mathrm{~km} / \mathrm{h}$ starting from rest?

Problem 6.- A car traveling at $88 \mathrm{~km} / \mathrm{h}$ strikes a tree. Thanks to the seat belts, air bag and modern design of the front of the car, the driver is brought to rest with constant acceleration after traveling 1.1 m . What was the driver's acceleration during the collision?

Problem 7.- A driver going at 60 miles/hour $(=26.8 \mathrm{~m} / \mathrm{s})$ sees a deer crossing the road in front of him and hits the brakes when he is 60 m away. The coefficient of static friction is 0.75 (the car has ABS, so it doesn't slip). Is the deer safe?

Problem 8.- Calculate the distance covered by a "model T" car that accelerates from zero to its maximum speed of 45 mph in 15.0 seconds. [1 mile $=1609 \mathrm{~m}$]

Problem 9.- A roadster accelerates from zero to 105 miles per hour in 6.0 seconds. Calculate the average acceleration in $\mathrm{m} / \mathrm{s}^{2} .(1 \mathrm{mile}=1609 \mathrm{~m})$

Problem 10.- A plane accelerates along a runway at $6.55 \mathrm{~m} / \mathrm{s}^{2}$ staring from rest. It needs to reach $370 \mathrm{~km} / \mathrm{h}$ for take-off. What should be the minimum length of the runway for a safe take-off?

Problem 11.- In coming to a stop, a car leaves a 95 m -long skid mark along the highway. Assuming an acceleration of $-7.5 \mathrm{~m} / \mathrm{s}^{2}$, determine the initial velocity of the car just before the brakes were applied (you can give the answer in m / s).

Problem 12.- The brakes of an $855-\mathrm{kg}$ car apply a force of -4880 N . Calculate the distance needed to stop the car if it is going at 65 miles per hour. [1 mile $=1609 \mathrm{~m}$]

Problem 13.- You design the front of a car so in the case of a collision at $55 \mathrm{~km} / \mathrm{h}$ the passenger will experience a maximum of 20 " g "s of acceleration.
Calculate how much distance you have to slow down the passenger to rest without exceeding the maximum acceleration.
$1 " \mathrm{~g} "=9.8 \mathrm{~m} / \mathrm{s}^{2}$

