Physics I

Constant Acceleration

Equations for constant acceleration in 1 dimension

$$
x=v_{1} t+\frac{1}{2} a t^{2} \quad v_{2}=v_{1}+a t \quad v_{2}^{2}=v_{1}^{2}+2 a x \quad\langle v\rangle=\frac{v_{1}+v_{2}}{2}=\frac{x}{t}
$$

Problem 1.- In the $100-\mathrm{m}$ race an athlete accelerates uniformly from rest to his top speed of $\mathrm{v}_{2}=10 \mathrm{~m} / \mathrm{s}$ in the first $\mathrm{x}=15 \mathrm{~m}$ as shown in the figure.
a) Find his acceleration in the first 15 m .
b) Find the time it takes to cover those first 15 m .

Solution:

a) The acceleration in those first 15 m can be calculated using:

$$
v_{2}^{2}=v_{1}^{2}+2 a x \rightarrow a=\frac{v_{2}^{2}-v_{1}^{2}}{2 x}, \text { so: } a=\frac{10^{2}-0^{2}}{2(15)}=3.33 \mathrm{~m} / \mathrm{s}^{2}
$$

b) The time it takes him to run those first 15 m : Since $x=v_{1} t+\frac{1}{2} a t^{2}$, we have:
$15=0 t+\frac{1}{2}(3.33) t^{2} \rightarrow t=\sqrt{\frac{2 \times 15}{3.33}}=3 \mathrm{~s}$
Problem 2.- If we could neglect air resistance and other secondary effects, how long would it take for a bullet fired straight up with an initial velocity of $350 \mathrm{~m} / \mathrm{s}$ to hit the shooter?

Solution: We can use the equation: $\mathrm{y}=v_{1 y} t+\frac{1}{2} a_{y} t^{2}$ to solve the problem. Notice that $\mathrm{y}=0$ because the bullet comes back to the same place, so:

$$
\begin{aligned}
& 0=(350) t+\frac{1}{2}(-9.8) t^{2} \\
& \rightarrow t=0 \quad \text { or } \quad t=\frac{350}{4.9}=71 \mathrm{~s}
\end{aligned}
$$

Problem 3.- You dangle your watch from a thin piece of string while the jetliner you are in accelerates for takeoff. Calculate the acceleration if the string makes an angle of 35° with respect to the vertical.

Solution: We know that the force on a string, cable, thin wire, thread or chain is along the same direction (it cannot be sideways). Now, on the watch there are two forces acting: its own weight and the string force.

The watch is in equilibrium vertically, so the weight has to cancel the vertical component of the string force vector:

$$
F_{\text {string }} \cos 35^{\circ}=m g
$$

In the horizontal direction, there is only one force, namely the horizontal component of the string tension and using Newton's second law:

$$
-F_{\text {string }} \sin 35^{\circ}=m a
$$

Dividing the second equation by the first, we get:

$$
\frac{-F_{\text {string }} \sin 35^{\circ}}{F_{\text {string }} \cos 35^{\circ}}=\frac{m a}{m g} \rightarrow-\frac{\sin 35^{\circ}}{\cos 35^{\circ}}=\frac{a}{g} \rightarrow a=-g \tan 35^{\circ}=-6.86 \mathrm{~m} / \mathbf{s}^{2}
$$

Problem 4.- A rocket needs to reach a speed of $8,000 \mathrm{~m} / \mathrm{s}$ starting from rest.
Assuming a constant acceleration of $25 \mathrm{~m} / \mathrm{s}^{2}$ calculate:
i) The time it will take to reach that velocity
ii) The distance covered in that time

Solution:

i) To find the time we use the equation: $v_{2}=v_{1}+$ at

$$
8000=0+25 t \rightarrow t=\frac{8000}{25}=\mathbf{3 2 0} \mathrm{s}
$$

ii) To find the distance we can use the fact that the average velocity is $4000 \mathrm{~m} / \mathrm{s}$ and then:

$$
\mathrm{x}=\langle\mathrm{v}\rangle \mathrm{t}=4000 \times 320=\mathbf{1 , 2 8 0 , 0 0 0} \mathbf{~ m}
$$

Problem 5.- A plane on an aircraft carrier has only 122 m to accelerate on take-off. How much must be the acceleration (assumed constant) if it has to reach $195 \mathrm{~km} / \mathrm{h}$ starting from rest?

Solution: First, let us calculate the final velocity in m / s :

$$
\mathrm{v}_{2}=195 \frac{\mathrm{~km}}{\mathrm{~h}}\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=\mathbf{5 4 . 2} \mathrm{m} / \mathrm{s}
$$

Now we use this to find the acceleration:

$$
\mathrm{v}_{2}^{2}=\mathrm{v}_{1}^{2}+2 \mathrm{ax} \rightarrow \mathrm{a}=\frac{\mathrm{v}_{2}^{2}-\mathrm{v}_{1}^{2}}{2 \mathrm{x}}=\frac{54.2^{2}-0^{2}}{2 \times 122}=\mathbf{1 2} \mathbf{~ m} / \mathrm{s}^{2}
$$

Problem 6.- A car traveling at $88 \mathrm{~km} / \mathrm{h}$ strikes a tree. Thanks to the seat belts, air bag and modern design of the front of the car, the driver is brought to rest with constant acceleration after traveling 1.1 m . What was the driver's acceleration during the collision?

Solution: $v_{1}=88 \frac{\mathrm{~km}}{\mathrm{~h}}\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=24.4 \mathrm{~m} / \mathrm{s}$
The final velocity is zero and the acceleration is:
$a=\frac{0-(24.4 m / s)^{2}}{2(1.1 m)}=\mathbf{2 7 2} \mathbf{~ m} / \mathbf{s}^{2}$

Problem 7.- A driver going at $60 \mathrm{miles} / \mathrm{hour}(=26.8 \mathrm{~m} / \mathrm{s})$ sees a deer crossing the road in front of him and hits the brakes when he is 60 m away. The coefficient of static friction is 0.75 (the car has ABS, so it doesn't slip). Is the deer safe?

Solution: We can calculate the distance that the driver needs to stop: Its initial velocity is $26.8 \mathrm{~m} / \mathrm{s}$ and since $\mu_{K}=0.75$ it means that its acceleration will be $-0.75\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ so the distance needed is:

$$
\begin{aligned}
& \mathrm{V}_{2}^{2}=\mathrm{V}_{1}^{2}+2 \mathrm{ax} \rightarrow 0=\mathrm{V}_{1}^{2}+2 \mathrm{ax}=(26.8 \mathrm{~m} / \mathrm{s})^{2}+2\left(-7.3 \mathrm{~m} / \mathrm{s}^{2}\right) x \\
& x=\frac{(26.8 \mathrm{~m} / \mathrm{s})^{2}}{2\left(7.3 \mathrm{~m} / \mathrm{s}^{2}\right)}=49.2 \mathrm{~m}
\end{aligned}
$$

Since this is less than the distance to the deer, it gets to live another day.
Problem 8.- Calculate the distance covered by a "model T" car that accelerates from zero to its maximum speed of 45 mph in 15.0 seconds. [1 mile $=1609 \mathrm{~m}$]

Solution: Converting 45 mph to meters/second:
$\mathrm{v}_{2}=\frac{45 \mathrm{miles}}{\mathrm{h}}\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1609 \mathrm{~m}}{1 \mathrm{mile}}\right)=20.1 \mathrm{~m} / \mathrm{s}$
The average velocity is:
$\overline{\mathrm{v}}=\frac{\mathrm{v}_{1}+\mathrm{v}_{2}}{2}=\frac{0+20.1 \mathrm{~m} / \mathrm{s}}{2}=10.05 \mathrm{~m} / \mathrm{s}$
And the distance covered in 15 s :
$\mathrm{x}=\overline{\mathrm{v}} \mathrm{t}=(10.05 \mathrm{~m} / \mathrm{s})(15 \mathrm{~s})=152 \mathrm{~m}$

Problem 9.- A roadster accelerates from zero to 105 miles per hour in 6.0 seconds. Calculate the average acceleration in $\mathrm{m} / \mathrm{s}^{2} .(1 \mathrm{mile}=1609 \mathrm{~m})$

Solution: First, let us convert the final velocity to m / s :

$$
\mathrm{V}_{2}=105 \frac{\mathrm{mile}}{\mathrm{~h}}\left(\frac{1609 \mathrm{~m}}{1 \mathrm{mile}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)=46.93 \mathrm{~m} / \mathrm{s}
$$

The initial velocity is zero, and so, the definition of acceleration gives us:

$$
\mathrm{a}=\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{\mathrm{t}}=\frac{46.93 \mathrm{~m} / \mathrm{s}-0}{6.0 \mathrm{~s}}=7.8 \mathrm{~m} / \mathrm{s}^{2}
$$

Problem 10.- A plane accelerates along a runway at $6.55 \mathrm{~m} / \mathrm{s}^{2}$ staring from rest. It needs to reach $370 \mathrm{~km} / \mathrm{h}$ for take-off. What should be the minimum length of the runway for a safe take-off?

Solution: If the plane starts from rest, $\mathrm{v}_{1}=0$ and the required velocity for takeoff is:

$$
\mathrm{v}_{2}=370 \frac{\mathrm{~km}}{\mathrm{~h}}\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=102.8 \mathrm{~m} / \mathrm{s}
$$

To get the length of the runway we use the formula $\mathrm{v}_{2}{ }^{2}=\mathrm{v}_{1}^{2}+2 \mathrm{ax}$:

$$
(102.8 \mathrm{~m} / \mathrm{s})^{2}=(0)^{2}+2\left(6.55 \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{x} \rightarrow \mathrm{x}=\frac{(102.8 \mathrm{~m} / \mathrm{s})^{2}}{2\left(6.55 \mathrm{~m} / \mathrm{s}^{2}\right)}=\mathbf{8 0 7} \mathrm{m}
$$

Problem 11.- In coming to a stop, a car leaves a $95 m$-long skid mark along the highway. Assuming an acceleration of $-7.5 \mathrm{~m} / \mathrm{s}^{2}$, determine the initial velocity of the car just before the brakes were applied (you can give the answer in m / s).

Solution: In this problem we know the final velocity $\left(\mathrm{V}_{2}=0\right)$ the distance traveled ($\mathrm{x}=95 \mathrm{~m}$) and the acceleration $\left(a=-7.5 \mathrm{~m} / \mathrm{s}^{2}\right)$. The easiest way to find the initial velocity is using the equation:

$$
\mathrm{V}_{2}^{2}=\mathrm{V}_{1}^{2}+2 \mathrm{ax}
$$

With the information of the problem:

$$
(0)^{2}=\mathrm{V}_{1}^{2}+2\left(-7.5 \mathrm{~m} / \mathrm{s}^{2}\right)(95 \mathrm{~m}) \rightarrow \mathrm{V}_{1}^{2}=1425 \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

We only take the positive solution in this case, which is: $\mathbf{V}_{\mathbf{1}}=\mathbf{3 8} \mathbf{~ m} / \mathbf{s}$
Problem 12.- The brakes of an $855-\mathrm{kg}$ car apply a force of -4880 N . Calculate the distance needed to stop the car if it is going at 65 miles per hour. [1 mile $=1609 \mathrm{~m}$]

Solution: The speed of the car in m / s is: $\mathrm{v}=65 \frac{\mathrm{mile}}{\mathrm{h}}\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1609 \mathrm{~m}}{1 \mathrm{mile}}\right)=29.1 \mathrm{~m} / \mathrm{s}$

To stop the car the kinetic energy is totally lost. The work done by the braking force will be equal to the loss:
$\mathrm{F}_{\text {braking }} \mathrm{d}=\frac{1}{2} \mathrm{mv}^{2} \rightarrow \mathrm{~d}=\frac{\frac{1}{2} \mathrm{mv}^{2}}{\mathrm{~F}_{\text {braking }}}=\frac{\mathrm{mv}^{2}}{2 \mathrm{~F}_{\text {braking }}}=\frac{655 \mathrm{~kg}(29.1 \mathrm{~m} / \mathrm{s})^{2}}{2(3880 \mathrm{~N})}=71.5 \mathrm{~m}$

Problem 13.- You design the front of a car so in the case of a collision at $55 \mathrm{~km} / \mathrm{h}$ the passenger will experience a maximum of 20 " g "s of acceleration.
Calculate how much distance you have to slow down the passenger to rest without exceeding the maximum acceleration.
$1 " \mathrm{~g} "=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Solution:
$\mathrm{v}_{2}=55 \frac{\mathrm{~km}}{\mathrm{~h}}\left(\frac{1 \mathrm{~h}}{3600}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=15.3 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{2}{ }^{2}={v_{1}}^{2}+2 a x \rightarrow 0^{2}=15.3^{2}+2(20 \times 9.8) x \rightarrow x=\frac{15.3^{2}}{2 \times 20 \times 9.8}=\mathbf{0 . 6 ~ m}$

