Physics I

Velocity Graphical

Problem 1.- The figure describes the motion of a particle. Estimate its maximum velocity (in m / s) and indicate at what time it happens.

Solution: The maximum velocity happens when the slope of the tangent is maximum. By looking at the graph we find that it happens at $\mathbf{t}=\mathbf{1 . 0 s}$
To get the velocity we can draw a tangent at that point as follows:

And find the slope by dividing $\Delta y / \Delta x$:

So $v=\frac{\Delta y}{\Delta x}=\mathbf{1 m} / \mathbf{s}$
Problem 2.- In the following figure determine the instantaneous velocity and acceleration when the time is $\mathrm{t}=4 \mathrm{~s}$.

Solution: The slope of the curve gives us the velocity: $v=\frac{\Delta x}{\Delta t}=\frac{-4 m}{8 s}=\mathbf{- 0 . 5 ~ m} / \mathrm{s}$

We notice that the slope is constant, meaning that the acceleration is zero.

Problem 3.- In the following figure estimate the instantaneous velocity at $\mathrm{t}=4 \mathrm{~s}$.

Solution: To find the velocity we draw a right triangle using the tangent to the curve as our hypotenuse:

We get the instantaneous velocity by calculating the slope: $v=\frac{6 \mathrm{~m}}{8 \mathrm{~s}}=\mathbf{0 . 7 5 m} / \mathbf{s}$

