## Physics I

## Elasticity

$\Delta L=\frac{F L}{E A} \quad$ (the "flea" equation)
Problem 1.- A steel cable 12 m long and has a diameter of 8 mm . Calculate how much it will stretch under a tension of 4500 N .
[Young's modulus of steel $=200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$ ]
Solution: The area of the cross section is: $A=\pi R^{2}=\pi(0.004 m)^{2}$

The other values of the "flea" equation are given in the problem so:
$\Delta L=\frac{F L}{E A}=\frac{(4500 \mathrm{~N})(12 \mathrm{~m})}{\left(200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)\left[\pi \times(0.004 \mathrm{~m})^{2}\right]}=\mathbf{5 . 4} \mathbf{~ m m}$
Problem 1a.- Calculate the elongation of a steel cable 12 m long with a diameter of 16 mm under a 450 kg load. [Young's modulus of steel $\mathrm{E}=200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$ ]
Note: The area of a circle is $A=\frac{\pi D^{2}}{4}$, where $D$ is the diameter.


Solution: This problem shows the use of the "Flea equation", all you need to do is substitute the correct numbers in the equation:
$\Delta L=\frac{\mathrm{FL}}{\mathrm{EA}}=\frac{\mathrm{mgL}}{\mathrm{E}\left(\frac{\pi \mathrm{D}^{2}}{4}\right)}=\frac{450 \times 9.8 \times 12}{200 \times 10^{9}\left(\frac{\pi(0.016)^{2}}{4}\right)}=\mathbf{0 . 0 0 1 3} \mathbf{~ m}$

