Physics I

Statics Problems Cables

Elasticity: $\Delta L=\frac{F L}{E A} \quad$ (the "flea" equation)

Problem 1.- Calculate the mass of the cable if the forces on the supports are as indicated:

Problem 2.- Calculate the tension at the center of the cable if the force on the right support is 350N:

Problem 3.- Calculate the force of tension at the right support of the cable if the force on the left support is 168 N , horizontal, as shown:

Problem 3a.- Calculate the mass of the cable shown in the figure if the tension at the right support makes an angle of 55° to the horizontal and the force on the left support is 250 N , horizontal.

Problem 4.- What would be the maximum load that you can lift with a single steel cable that has an effective cross section of $1 \mathrm{in}^{2}$ if you want a safety factor of 5 ?
(1 inch $=0.0254 \mathrm{~m}$)

Problem 5.-

a) What is the minimum cross-sectional area of a steel cable from which is suspended a 450 kg load. Use a safety factor of 7. [Ultimate strength of steel $=500 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$]
b) If the cable is 12 m long, how much does it elongate?
[Young's modulus of steel $=200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$]

