Physics I

Statics knots

Equilibrium equations $\sum F = 0$ and $\sum \tau = 0$ Where $\tau = Fr \sin \angle_F^r$ Law of sines $\frac{F_1}{\sin \theta_1} = \frac{F_2}{\sin \theta_2} = \frac{F_3}{\sin \theta_3}$

Problem 1.- The mass of the traffic light in the figure is 40 kg, so the tension T_3 is 392N. Calculate the tensions T_1 and T_2 .

Problem 1a: The mass of the traffic light in the figure is 50 kg, so the tension T_3 is 490 N. Calculate the tensions T_1 and T_2 .

Problem 4.- Which tension is the smallest? Which one the largest? Defend your answer with a vector diagram or equations.

Problem 4a.- Find the tension on the strings.

Problem 5.- Karl Petit, a circus performer, walks across a "tight rope" strung horizontally between two supports separated by a distance d=12 m. The sag in the rope when he is at the midpoint is $\theta=15^{\circ}$. Calculate the tension in the rope at that point knowing that Karl Petit's mass is m=55 kg.

