Physics I

Statics with poles

First condition of equilibrium $\sum F_{x}=0$ and $\sum F_{y}=0$
Second condition of equilibrium $\sum \tau=0 \quad$ where $\tau= \pm F r \sin \angle_{F}^{r}$
Law of sines $\quad \frac{F_{1}}{\sin \theta_{1}}=\frac{F_{2}}{\sin \theta_{2}}=\frac{F_{3}}{\sin \theta_{3}}$

Problem 1.- Find the tension in the cable. The weight of the lamp is 80 N , the weight of the horizontal pole is 150 N and its center of mass is 0.95 m from the left side (it is a tapered shape, so it is not in the middle).

Problem 2.- Calculate the tension (force) in the cable. Neglect the weight of the pole.

Problem 2a.- Calculate the horizontal force $\left(F_{x}\right)$ acting on the hinge. Neglect the weight of the pole.

Problem 3.- Calculate the tension on the steel cable. Neglect the weight of the pole.

Problem 4.- Calculate the tension (force) on the cable. Neglect the weight of the pole.

Problem 5.- Calculate the tension force in the cable and the reaction at the hinge. The block has a weight of 500 N , and we can neglect the weight of the supporting pole.

