Physics I

Force

Newton's second law of motion $\sum \mathrm{F}_{\mathrm{x}}=\mathrm{ma}_{\mathrm{x}} \quad \sum \mathrm{F}_{\mathrm{y}}=\mathrm{ma}_{\mathrm{y}}$ Equations for constant acceleration
$x=v_{1} t+\frac{1}{2} a t^{2}$
$v_{2}=v_{1}+a t$
$v_{2}^{2}=v_{1}^{2}+2 a x$
$\bar{v}=\frac{v_{1}+v_{2}}{2}$

Problem 1.- A baseball (mass $=\mathbf{0 . 1 4 1} \mathbf{~ k g})$ traveling at $\mathbf{v}_{\mathbf{1}}=\mathbf{3 2 . 5} \mathbf{~ m} / \mathrm{s}$ strikes the catcher's mitt, which brings the ball to rest by recoiling $\mathbf{x}=\mathbf{0 . 1 5 5} \mathbf{~ m}$. Calculate the average force acting on the glove.

Problem 2.- A crate that has a mass of 99 kg is pulled with a force F . A pendulum mounted on the crate has a mass of 1 kg and hangs at an angle $\theta=20^{\circ}$ off the vertical. Calculate the force F if the coefficient of friction between the crate and the floor is $\mu_{\mathrm{k}}=0.35$

A) 335 N
B) 678 N
C) 357 N
D) 343 N
E) 700 N

Problem 2a.- A crate that has a mass of 99 kg is pulled with a force F . A pendulum mounted on the crate has a mass of 1 kg and hangs at an angle $\theta=20^{\circ}$ off the vertical. Calculate the force F if there is no friction between the crate and the floor.

Problem 3.- A person pulls a 60 kg sled on an icy surface with a force of 80.0 N at an angle of 29° upward from the horizontal. Calculate the acceleration. Ignore friction in this problem.

Problem 4.- In playing tennis a ball that had an initial velocity of $v_{1}=26 \mathrm{~m} / \mathrm{s}$ horizontally is returned also horizontally with a speed of $v_{2}=24 \mathrm{~m} / \mathrm{s}$. Calculate the average force on the ball if its mass is 0.057 kg and the contact with the racket lasted 5 milliseconds.

Problem 5.- A 0.22 kg object follows the path given by $\overrightarrow{\mathrm{r}}=(3 \sin 2 t, 4 \cos 2 t)$. Calculate the force acting on the object.

Problem 6.- What force (F) do you need to apply to lift the block of mass M shown in the figure?

Problem 7.- A bullet of mass 2 g is shot horizontally into a sand bag, striking the sand with a velocity of $600 \mathrm{~m} / \mathrm{s}$. It penetrates 20 cm before stopping. What is the average stopping force acting on the bullet?

Problem 8.- If the position of a 1.5 kg particle is described by the vector:

$$
\vec{r}=\left(t^{2}, 5 \cos t\right)
$$

Find the net force acting on the particle as a function of time.

Problem 8a.- If the position of a 2.5 kg particle is described by the vector:

$$
\vec{r}=\left(4 t^{4}, 5 \cos 2 t\right)
$$

Find the net force acting on the particle at time $\mathbf{t}=\mathbf{1 . 5 7} \mathbf{s}$

Problem 9.- In the Atwood machine shown in the figure $\mathrm{m}_{2}=3 \mathrm{~kg}$ and $\mathrm{m}_{1}=2.5 \mathrm{~kg}$ and you can ignore the mass of the pulley and any friction. Find the speed of m_{2} when it hits the ground if you release the masses with zero initial velocity.

Problem 9a.- You want to study acceleration, but your rudimentary instruments only allow you to measure $1 \mathrm{~m} / \mathrm{s}^{2}$ or less, so you build an Atwood machine to get less than that. What masses m_{1} and m_{2} would you choose to accomplish this?

Problem 10.- Ignore friction in the following situation. Calculate how long it will take for box 1 to slide 1.5 m if it starts from rest.
Mass of box $1=1.1 \mathrm{~kg}$
Mass of box2 $=2.2 \mathrm{~kg}$

Problem 11.- The brakes of an $800-\mathrm{kg}$ car apply a force of $-4,000 \mathrm{~N}$. Calculate the distance needed to stop the car if it is going at 35 miles per hour. [1 mile $=1609 \mathrm{~m}$]

Problem 12.- In an experiment with a force table you determine three forces:
$\mathrm{F}_{1}=5 \mathrm{~N} \quad$ direction $=30^{\circ}$
$\mathrm{F}_{2}=8 \mathrm{~N} \quad$ direction $=120^{\circ}$
$\mathrm{F}_{3}=10 \mathrm{~N} \quad$ direction $=150^{\circ}$
Calculate the sum of these three vectors. Give your answer in magnitude and angle.

Problem 13.- An aircraft carrier has a very short runway only 85 m long. How much force would you need to apply to a $12,000 \mathrm{~kg}$ airplane for it to reach its final take off speed of $55 \mathrm{~m} / \mathrm{s}$ starting from rest?

