Physics I

Force

Newton's second law of motion $\sum F_x = ma_x$ $\sum F_y = ma_y$ Equations for constant acceleration

$$x = v_1 t + \frac{1}{2}at^2$$
 $v_2 = v_1 + at$ $v_2^2 = v_1^2 + 2ax$ $\overline{v} = \frac{v_1 + v_2}{2}$

Problem 1.- A baseball (mass = 0.141 kg) traveling at v_1 =32.5 m/s strikes the catcher's mitt, which brings the ball to rest by recoiling x=0.155 m. Calculate the average force acting on the glove.

Problem 2.- A crate that has a mass of 99kg is pulled with a force F. A pendulum mounted on the crate has a mass of 1kg and hangs at an angle $\theta = 20^{\circ}$ off the vertical. Calculate the force F if the coefficient of friction between the crate and the floor is $\mu_k = 0.35$

Problem 2a.- A crate that has a mass of 99kg is pulled with a force F. A pendulum mounted on the crate has a mass of 1kg and hangs at an angle $\theta = 20^{\circ}$ off the vertical. Calculate the force F if there is no friction between the crate and the floor.

Problem 3.- A person pulls a 60 kg sled on an icy surface with a force of 80.0 N at an angle of 29° upward from the horizontal. Calculate the acceleration. Ignore friction in this problem.

Problem 4.- In playing tennis a ball that had an initial velocity of $v_1=26$ m/s horizontally is returned also horizontally with a speed of $v_2=24$ m/s. Calculate the average force on the ball if its mass is 0.057 kg and the contact with the racket lasted 5 milliseconds.

Problem 5.- A 0.22 kg object follows the path given by $\vec{r} = (3 \sin 2t, 4 \cos 2t)$. Calculate the force acting on the object.

Problem 6.- What force (F) do you need to apply to lift the block of mass M shown in the figure?

Problem 7.- A bullet of mass 2 g is shot horizontally into a sand bag, striking the sand with a velocity of 600 m/s. It penetrates 20 cm before stopping. What is the average stopping force acting on the bullet?

Problem 8.- If the position of a 1.5 kg particle is described by the vector:

 $\vec{r} = (t^2, 5\cos t)$

Find the net force acting on the particle as a function of time.

Problem 8a.- If the position of a 2.5 kg particle is described by the vector:

 $\vec{r} = (4t^4, 5\cos 2t)$

Find the net force acting on the particle at time t=1.57s

Problem 9.- In the Atwood machine shown in the figure $m_2=3$ kg and $m_1=2.5$ kg and you can ignore the mass of the pulley and any friction. Find the speed of m_2 when it hits the ground if you release the masses with zero initial velocity.

Problem 9a.- You want to study acceleration, but your rudimentary instruments only allow you to measure $1m/s^2$ or less, so you build an Atwood machine to get less than that. What masses m_1 and m_2 would you choose to accomplish this?

Problem 10.- Ignore friction in the following situation. Calculate how long it will take for box1 to slide 1.5 m if it starts from rest.

Mass of box1 = 1.1 kg Mass of box2 = 2.2 kg

Problem 11.- The brakes of an 800-kg car apply a force of -4,000N. Calculate the distance needed to stop the car if it is going at 35 miles per hour. [1 mile=1609 m]

Problem 12.- In an experiment with a force table you determine three forces:

 $F_1 = 5N$ direction = 30° $F_2 = 8N$ direction = 120° $F_3 = 10N$ direction = 150°

Calculate the sum of these three vectors. Give your answer in magnitude and angle.

Problem 13.- An aircraft carrier has a very short runway only 85m long. How much force would you need to apply to a 12,000 kg airplane for it to reach its final take off speed of 55m/s starting from rest?