Physics I

Friction

Problem 1.- A coin is located 0.2 m away from the center of a horizontal turntable which accelerates slowly. Calculate at what angular velocity (ω) the coin will start sliding if the coefficient of static friction is $\mu=0.5$

Solution: The coin will start sliding when the friction force is not enough to produce the required centripetal force. At that point: $F_{\text {friction }}=\mu F_{\text {Normal }}=\mu m g=m \omega^{2} R$, so to find ω :
$\mu m g=m \omega^{2} R \rightarrow=\omega=\sqrt{\frac{\mu g}{R}}=\sqrt{\frac{0.5 \times 9.8}{0.2}}=4.9 \mathrm{rad} / \mathrm{s}$
Problem 2.- A block begins to slide down a ramp after being elevated to an angle of 35 degrees. What is the coefficient of static friction?

Solution: At the point of sliding the component of the weight parallel to the slope (mgsinθ) matches the normal force times the coefficient of static friction ($\mu \mathrm{mgcos} \theta$), so:

$$
m g \sin \theta=\mu m g \cos \theta \rightarrow \mu=\tan \theta=\tan 35^{\circ}=0.7
$$

Problem 3.- What is the maximum acceleration a car can undergo on a level road if the coefficient of static friction between the tires and the pavement is 0.65 ?

Solution:

Since the road is leveled the normal force is equal to the weight of the car and the maximum friction will be:

$$
F_{\text {FricitionMAX }}=\mu_{S} F_{N}=0.65 \mathrm{mg}
$$

if we divide by the mass we get the maximum acceleration:

$$
a_{M A X}=\frac{0.65 m g}{m}=0.65 g=6.4 \mathrm{~m} / \mathrm{s}^{2}
$$

Problem 3a.- What is the minimum distance to stop a car with an initial velocity of $15 \mathrm{~m} / \mathrm{s}$ on a level road if the coefficient of static friction between the tires and the pavement is 0.65 ?

Solution: Since the road is leveled, the normal force is equal to the weight of the car and the maximum friction will be:

$$
F_{\text {FrictionMAX }}=\mu_{S} F_{N}=0.65 \mathrm{mg}
$$

if we divide by the mass, we get the maximum acceleration:
$a_{M A X}=\frac{0.65 \mathrm{mg}}{m}=0.65 \mathrm{~g}=6.4 \mathrm{~m} / \mathrm{s}^{2}$
To find the distance we use the equation $v_{2}{ }^{2}=v_{1}{ }^{2}+2 a x$

$$
0^{2}=15^{2}+2(-6.4) x \rightarrow x=\frac{15^{2}}{2 \times 6.4}=\mathbf{1 7 . 6} \mathbf{~ m}
$$

Problem 4.- Rubber on ice has a very low coefficient of kinetic friction $\mu_{K}=0.13$
Based on this, calculate the distance needed to stop a car that is going at 20 miles per hour on a level icy road. Assume that the driver slam on the brakes, locking the wheels.
[1 mile=1609 m]

Solution: The speed of the car in m / s is:

$$
v=20 \frac{\text { mile }}{h}\left(\frac{1 h}{3600 \mathrm{~s}}\right)\left(\frac{1609 \mathrm{~m}}{1 \text { mile }}\right)=8.94 \mathrm{~m} / \mathrm{s}
$$

The friction force is given by:
$\mathrm{F}_{\text {fr }}=\mu_{\mathrm{S}} \mathrm{F}_{\text {Normal }}=\mu_{\mathrm{S}} \mathrm{mg}$

To stop the car the kinetic energy is totally lost, so the work done by the friction force will be equal to the loss:
$F_{f r} d=\mu_{s} m g d=\frac{1}{2} m v^{2} \rightarrow d=\frac{\frac{1}{2} m v^{2}}{\mu_{s} m g}=\frac{v^{2}}{2 \mu_{s} g}$
For a coefficient of 0.13 we get: $\quad d=\frac{(8.94 m / s)^{2}}{2(0.13)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=\mathbf{3 1 . 4} \mathbf{~ m}$

Problem 5.- A hockey puck is given an initial speed of $2.5 \mathrm{~m} / \mathrm{s}$ and it slides 15 m on the ice before it stops. Calculate the coefficient of kinetic friction.

Solution: The puck slows down due to the friction force: $\mathrm{F}_{\text {friction }}=\mu_{\mathrm{K}} \mathrm{F}_{\text {Normal }}=m a$, but the normal force is equal to the weight in this case (level surface, no other vertical forces).
$\mu_{\mathrm{K}} \mathrm{mg}=\mathrm{ma} \rightarrow \mu_{\mathrm{K}}=\frac{\mathrm{a}}{\mathrm{g}}$
We know the initial velocity of the puck ($2.5 \mathrm{~m} / \mathrm{s}$) and the final velocity (zero) and the displacement ($\mathrm{x}=15 \mathrm{~m}$) so we can calculate the acceleration:
$a=\frac{v_{2}^{2}-v_{1}^{2}}{2 x}=\frac{0-(2.5 m / s)^{2}}{2(15 m)}=-0.208 \mathrm{~m} / \mathrm{s}^{2}$
So, the coefficient of kinetic friction is: $\mu_{\mathrm{K}}=\frac{a}{g}=\frac{0.208}{9.8}=\mathbf{0 . 0 2 1}$

Problem 6.- A 15 kg box is sitting on a rough, level surface. A horizontal force of 95 N is needed to start moving the box. Once the box starts moving the 95 N force is maintained and the box accelerates at $1.5 \mathrm{~m} / \mathrm{s}^{2}$
a) Find the coefficient of static friction.
b) Find the coefficient of kinetic friction.

Solution:

a) At the threshold point the friction force is 95 N and the normal force (equal to the weight in this case) is $15 \times 9.8=147 \mathrm{~N}$, so the equation is

$$
\mathrm{F}_{\text {friction }}=\mu_{\mathrm{S}} \mathrm{~F}_{\text {Normal }} \rightarrow \mu_{\mathrm{S}}=\frac{\mathrm{F}_{\text {friction }}}{\mathrm{F}_{\text {Normal }}}=\frac{95}{147}=\mathbf{0 . 6 5}
$$

b) Once the box is in motion, we can calculate the friction force using Newton's second law as follows

$$
95-\mathrm{F}_{\text {friction }}=m a \rightarrow \mathrm{~F}_{\text {friction }}=95-\mathrm{ma}=95-15 \times 1.5=72.5 \mathrm{~N}
$$

And now, we can calculate the coefficient of friction:

$$
\mathrm{F}_{\text {friction }}=\mu_{\mathrm{k}} \mathrm{~F}_{\text {Normal }} \rightarrow \mu_{\mathrm{k}}=\frac{\mathrm{F}_{\text {friction }}}{\mathrm{F}_{\text {Normal }}}=\frac{72.5}{147}=\mathbf{0 . 4 9}
$$

