Physics I

Inclines

Problem 1.- Draw a free body diagram of the box shown in the figure and calculate its acceleration if it is sliding down the slope without friction.

Problem 2.- The figure shows a 1500-kg sphere leaning against a frictionless surface and held in place by a steel cable which is parallel to the surface. Find the tension on the cable if the angle $\theta = 48^{\circ}$

Problem 3.- The box in the picture has a mass of 15kg and it is in equilibrium (its acceleration is zero).

- i) Draw the free body diagram of the object, showing all the forces and angles.
- ii) Calculate the friction force.

Problem 3a.- The box in the picture has a mass of 15kg and is sliding down with zero acceleration. Draw the free body diagram of the object, showing all the forces, and calculate the friction force.

Problem 4.- A sled starts down a slope with an initial velocity $v_1 = 4m/s$. Calculate its final velocity after sliding x = 12m if the angle of the incline is $\theta = 22^{\circ}$ and the coefficient of kinetic friction is $\mu_k = 0.2$

Problem 5.- Calculate the angle θ , knowing that the horizontal force necessary to keep the sphere from moving is 10.5 N.

Consider the friction between the sphere and the inclined surface to be zero.

Problem 6.- In building the pyramids of Egypt a theory proposes that 25 people would pull a 2,500 kg block up an incline at a 28° angle. Neglecting friction estimate the force applied by each person.

Problem 7.- On a level road a car can decelerate at $a = -4.9 \frac{\text{m}}{\text{s}^2}$ without skidding. With that information calculate the maximum possible deceleration if the road is inclined $\theta = 6.4^{\circ}$ downhill. Assume the value of μ_s is the same.

Problem 8.- Take the coefficient of static friction between rubber and wet asphalt to be $\mu_s = 0.35$, with these conditions find the maximum angle of inclination that a car can climb.

