Physics I

More dynamics problems

Newton's second law $\sum \mathrm{F}_{\mathrm{x}}=\mathrm{ma}_{\mathrm{x}} \quad \sum \mathrm{F}_{\mathrm{y}}=\mathrm{ma}_{\mathrm{y}}$

Problem 1.- A coin is thrown sliding upwards on an inclined plane 30° and it decelerates at a rate of $6 \mathrm{~m} / \mathrm{s}^{2}$. What will be its acceleration when it slides down? Approximate $g=10 \mathrm{~m} / \mathrm{s}^{2}$
A) $2 \mathrm{~m} / \mathrm{s}^{2}$
B) $3 \mathrm{~m} / \mathrm{s}^{2}$
C) $4 \mathrm{~m} / \mathrm{s}^{2}$
D) $5 \mathrm{~m} / \mathrm{s}^{2}$
E) $6 \mathrm{~m} / \mathrm{s}^{2}$

Problem 2.- The graph shows the velocity of a block as a function of time. Determine the friction coefficient of the block with surface 2 . Approximate $g=10 \mathrm{~m} / \mathrm{s}^{2}$

A) 0.01
B) 0.02
C) 0.03
D) 0.05
E) 0.10

Problem 3.- In the following cases there is no friction, and the force F is the same. Analyze in which case the tension of the string between the masses is maximum.

Problem 4.- In the following problem, $\mathrm{m}_{1}=2.0 \mathrm{~kg}, \mathrm{~m}_{2}=5.0 \mathrm{~kg}, \mu_{\mathrm{k}}=0.25$, and the angle of the incline is 45°. Calculate the tension in the string when mass m_{1} is sliding to the right. Notice that there is only friction between m_{1} and the horizontal surface.

Problem 5.- When the system shown in the figure is let go from rest, the 120 N weight goes down and the 200 N solid cylinder rolls without slipping. Find the velocities of the weight and cylinder after the weight has dropped 3.88 meters.

