Physics I

More dynamics problems

Newton's second law $\sum \mathrm{F}_{\mathrm{x}}=\mathrm{ma}_{\mathrm{x}} \quad \sum \mathrm{F}_{\mathrm{y}}=\mathrm{ma}_{\mathrm{y}}$

Problem 1.- A coin is thrown sliding upwards on an inclined plane 30° and it decelerates at a rate of $6 \mathrm{~m} / \mathrm{s}^{2}$. What will be its acceleration when it slides down? Approximate $g=10 \mathrm{~m} / \mathrm{s}^{2}$
A) $2 \mathrm{~m} / \mathrm{s}^{2}$
B) $3 \mathrm{~m} / \mathrm{s}^{2}$
C) $4 \mathrm{~m} / \mathrm{s}^{2}$
D) $5 \mathrm{~m} / \mathrm{s}^{2}$
E) $6 \mathrm{~m} / \mathrm{s}^{2}$

Solution: without friction, the deceleration should be $10 \sin 30^{\circ}=5 \mathrm{~m} / \mathrm{s}^{2}$, bu friction adds $1 \mathrm{~m} / \mathrm{s}^{2}$ to give the indicated $6 \mathrm{~m} / \mathrm{s}^{2}$.
When sliding down, the friction force will be opposed to the velocity, so the new acceleration will be:
$5 \mathrm{~m} / \mathrm{s}^{2}-1 \mathrm{~m} / \mathrm{s}^{2}=4 \mathrm{~m} / \mathrm{s}^{2}$

Answer: D

Problem 2.- The graph shows the velocity of a block as a function of time. Determine the friction coefficient of the block with surface 2 . Approximate $g=10 \mathrm{~m} / \mathrm{s}^{2}$

A) 0.01
B) 0.02
C) 0.03
D) 0.05
E) 0.10

Solution: We notice that in the second surface the block decelerates at a rate of $1 \mathrm{~m} / \mathrm{s}^{2}$. This indicates that the friction force is $m\left(1 \mathrm{~m} / \mathrm{s}^{2}\right)$ and since the normal force is $m \mathrm{~g}$, the friction coefficient is $\mu=\left(1 \mathrm{~m} / \mathrm{s}^{2}\right) /\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)=0.1$
Answer: E

Problem 3.- In the following cases there is no friction, and the force F is the same. Analyze in which case the tension of the string between the masses is maximum.

Solution: We analyze case by case:
(1) The weight is cancelled by the normal force in each mass, but they are accelerated towards the right with acceleration $\mathrm{F} /(2 \mathrm{~m})$. Hence, the tension in the string that joins them is $\mathrm{F} / 2$.
(2) The normal force on each mass cancels the component of the weight perpendicular to the inclined plane, but the component parallel to the plane minus the force F acts on both masses producing an acceleration of $(2 \mathrm{mg} \sin \theta-\mathrm{F}) /(2 \mathrm{~m})$. Again, the force in the string that joins the masses is $\mathrm{F} / 2$.
(3) The masses accelerate downwards with acceleration $(2 \mathrm{mg}-\mathrm{F}) /(2 \mathrm{~m})$ and that means that once again, the tension in the string that joins the two masses is $\mathrm{F} / 2$.

In conclusion, the force is F/2 in all three cases. Can you think of a better way of noticing this?
Problem 4.- In the following problem, $\mathrm{m}_{1}=2.0 \mathrm{~kg}, \mathrm{~m}_{2}=5.0 \mathrm{~kg}, \mu_{\mathrm{k}}=0.25$, and the angle of the incline is 45°. Calculate the tension in the string when mass m_{1} is sliding to the right. Notice that there is only friction between m_{1} and the horizontal surface.

Solution.- We start by drawing free body diagrams of the two masses:

Then, we apply Newton's second law to the two masses.
For m_{1} we notice that there is no acceleration in the Y-direction, so the sum of the forces must be zero:
$\sum F_{y}=0 \rightarrow F_{N 1}-m_{1} g=0 \rightarrow F_{N 1}=m_{1} g$
However, m_{1} is accelerated to the right with acceleration a, so:
$\sum F_{x}=m_{1} a \rightarrow F_{T}-F_{f}=m_{1} a$
The friction force can be calculated with $F_{f}=\mu_{k} F_{N}=\mu_{k} m_{1} g$, so the equation becomes
$F_{T}-\mu_{k} m_{1} g=m_{1} a$
For m_{2} the weight can be decomposed into two forces, $m_{2} g \sin \theta$ in the X-direction and $-m_{2} g \cos \theta$ in the Y-direction. The Y-direction component is cancelled by the normal force, so we can write:

$$
F_{N 2}=m_{s} g \cos \theta
$$

In the X -direction m_{2} is accelerated with the same acceleration as m_{1}, so:

$$
\begin{equation*}
m_{2} g \sin \theta-F_{T}=m_{2} a \tag{2}
\end{equation*}
$$

We can combine equations (1) and (2) to get the acceleration. To do this, we sum the two equations side by side:
$m_{2} g \sin \theta-\mu_{k} m_{1} g=\left(m_{1}+m_{2}\right) a \rightarrow a=\frac{m_{2} g \sin \theta-\mu_{k} m_{1} g}{m_{1}+m_{2}}$

Plugging this result in equation (1) we get the tension in the string.

$$
F_{T}=\frac{m_{2} m_{1}}{m_{1}+m_{2}}\left(\sin \theta+\mu_{k}\right) g
$$

With the values of the problem
$F_{T}=\frac{5 \times 2}{5+2}\left(\sin 45^{\circ}+0.25\right) 9.8=\mathbf{1 3 . 4} \mathbf{N}$
Problem 5.- When the system shown in the figure is let go from rest, the 120 N weight goes down and the 200 N solid cylinder rolls without slipping. Find the velocities of the weight and cylinder after the weight has dropped 3.88 meters.

Solution: Consider that the cylinder rolls a full turn. In that roll, its center will have moved a distance of 4π meters to the right and the string will have unraveled 2π meters, which means the weight will have dropped 6π meters. In other words, the relation between the displacements of the cylinder and the weight is

$$
x_{C}=\frac{4}{6} x_{W}
$$

Similarly, the relation between their center of mass speeds is

$$
v_{C}=\frac{4}{6} v_{W}
$$

Finally, since the cylinder rolls without slipping:

$$
\omega_{C}=\frac{v_{C}}{2 \mathrm{~m}}=\frac{4}{6} \frac{v_{W}}{2 \mathrm{~m}}
$$

To solve the problem, we consider that the potential energy lost by the weight is converted to kinetic energy of the weight and the cylinder (linear and rotational):

$$
m_{W} g h=\frac{1}{2} m_{W} v_{W}^{2}+\frac{1}{2} m_{C} v_{C}^{2}+\frac{1}{2} I_{C} \omega_{C}{ }^{2}
$$

We can put all the velocities in terms of the velocity of the weight:
$m_{W} g h=\frac{1}{2} m_{W} v_{W}{ }^{2}+\frac{1}{2} m_{C}\left(\frac{4}{6} v_{W}\right)^{2}+\frac{1}{2} I_{C}\left(\frac{4}{6} \frac{v_{W}}{2 \mathrm{~m}}\right)^{2}$
In addition, we know that the moment of inertia of the cylinder is $I_{C}=m_{C} \frac{(2 \mathrm{~m})^{2}}{2}$ and the mass of the cylinder is $m_{C}=\frac{200}{120} m_{W}$. Replacing these equations in (1) we get:

$$
m_{W} g h=\frac{1}{2} m_{W} v_{W}^{2}+\frac{1}{2}\left(\frac{200}{120} m_{W}\right)\left(\frac{4}{6} v_{W}\right)^{2}+\frac{1}{2}\left(\frac{200}{120} m_{W} \frac{(2 \mathrm{~m})^{2}}{2}\right)\left(\frac{4}{6} \frac{v_{W}}{2 \mathrm{~m}}\right)^{2}
$$

Solving for v_{W}, we get:
$v_{W}=\sqrt{\frac{18}{19} g h}=\sqrt{\frac{18}{19} 9.8(3.88)}=\mathbf{6 . 0 0} \mathbf{~ m} / \mathrm{s}$
And the velocity of the cylinder is:
$v_{C}=\frac{4}{6} v_{W}=4.00 \mathrm{~m} / \mathrm{s}$

