Physics I

Rockets

$$F_{thrust} = v_{gases} \left| \frac{dm}{dt} \right|$$

Problem 1.- A solid rocket booster (SRB) has a thrust of 13.2×10^6 N. The total mass of the fuel is 500,000 kg and it is spent in 75 seconds.

- (a) Calculate the speed of the gases expelled by the rocket.
- (b) Calculate the acceleration produced at lift-off if the total mass is the mass of fuel plus 91,000 kg of "inert weight."

Problem 2.- A rocket has an initial mass Mi= 100,000 kg out of which 86,500 kg is fuel. The speed of the gases generated by burning the fuel is 2,700 m/s. Calculate the final speed of the rocket after burning all its fuel starting from zero velocity. Only consider the thrust of the gases, no other forces.

Problem 3.- Calculate the speed of the gases of the Space Shuttle solid rocket booster that produce a thrust of $F_{thrust} = 12.5 \times 10^6 N$ and burns 499,000 kg of fuel in 110 seconds.

Problem 4.- A rocket uses solid fuel whose burned gases have a speed of 2700 m/s. At what rate do you need to burn the fuel to generate a thrust of 14,400 N?

Problem 5.- A rocket has the following specs:

Initial mass = M_o =21,000 kg Mass of fuel = M_{fuel} = 15,000 kg Relative velocity of gasses: v_{gases} = 2800 m/s Rate of fuel burning: $\frac{dm}{dt}$ =-190kg/s

Find:

A) 675 m/s

- a) The thrust force
- b) The initial acceleration

Problem 6.- Given the following conditions, find the height reached by a rocket just after burning all the fuel assuming a vertical trajectory.

Initial mass = M_o = 21,000 kg Mass of fuel = M_{fuel} = 15,000 kg Relative velocity: v_{rel} =-2800 m/s Rate of fuel burning: $\frac{dm}{dt}$ =-190kg/s