Physics I

Rockets

$$
F_{\text {thrust }}=v_{\text {gases }}\left|\frac{d m}{d t}\right|
$$

Problem 1.- A solid rocket booster (SRB) has a thrust of $13.2 \times 10^{6} \mathrm{~N}$. The total mass of the fuel is $500,000 \mathrm{~kg}$ and it is spent in 75 seconds.
(a) Calculate the speed of the gases expelled by the rocket.
(b) Calculate the acceleration produced at lift-off if the total mass is the mass of fuel plus $91,000 \mathrm{~kg}$ of "inert weight."

Problem 2.- A rocket has an initial mass $\mathrm{Mi}=100,000 \mathrm{~kg}$ out of which $86,500 \mathrm{~kg}$ is fuel. The speed of the gases generated by burning the fuel is $2,700 \mathrm{~m} / \mathrm{s}$. Calculate the final speed of the rocket after burning all its fuel starting from zero velocity. Only consider the thrust of the gases, no other forces.

A) $675 \mathrm{~m} / \mathrm{s}$
B) $1,350 \mathrm{~m} / \mathrm{s}$
C) $2,700 \mathrm{~m} / \mathrm{s}$
D) $5,400 \mathrm{~m} / \mathrm{s}$
E) $8,100 \mathrm{~m} / \mathrm{s}$

Problem 3.- Calculate the speed of the gases of the Space Shuttle solid rocket booster that produce a thrust of $F_{\text {thrust }}=12.5 \times 10^{6} \mathrm{~N}$ and burns $499,000 \mathrm{~kg}$ of fuel in 110 seconds.

Problem 4.- A rocket uses solid fuel whose burned gases have a speed of $2700 \mathrm{~m} / \mathrm{s}$. At what rate do you need to burn the fuel to generate a thrust of $14,400 \mathrm{~N}$?

Problem 5.- A rocket has the following specs:
Initial mass $=M_{o}=21,000 \mathrm{~kg} \quad$ Mass of fuel $=M_{\text {fuel }}=15,000 \mathrm{~kg}$
Relative velocity of gasses: $v_{\text {gases }}=2800 \mathrm{~m} / \mathrm{s}$ Rate of fuel burning: $\frac{d m}{d t}=-190 \mathrm{~kg} / \mathrm{s}$ Find:
a) The thrust force
b) The initial acceleration

Problem 6.- Given the following conditions, find the height reached by a rocket just after burning all the fuel assuming a vertical trajectory.

Initial mass $=M_{o}=21,000 \mathrm{~kg} \quad$ Mass of fuel $=M_{\text {fuel }}=15,000 \mathrm{~kg}$
Relative velocity: $v_{\text {rel }}=-2800 \mathrm{~m} / \mathrm{s} \quad$ Rate of fuel burning: $\frac{d m}{d t}=-190 \mathrm{~kg} / \mathrm{s}$

