Physics I

Rockets

$$
F_{\text {thrust }}=v_{\text {gases }}\left|\frac{d m}{d t}\right|
$$

Problem 1.- A solid rocket booster (SRB) has a thrust of $13.2 \times 10^{6} \mathrm{~N}$. The total mass of the fuel is $500,000 \mathrm{~kg}$ and it is spent in 75 seconds.
(a) Calculate the speed of the gases expelled by the rocket.
(b) Calculate the acceleration produced at lift-off if the total mass is the mass of fuel plus $91,000 \mathrm{~kg}$ of "inert weight."

Solution:

According to the thrust equation: $F_{\text {thrust }}=v_{\text {gases }}\left|\frac{d m}{d t}\right|$, so the gases will be expelled with a speed given by the equation:
$v_{\text {gases }}=\frac{F_{\text {thrust }}}{\left|\frac{d m}{d t}\right|}$,
Where the rate of fuel burning can be calculated using $\left|\frac{d m}{d t}\right|=\frac{m_{\text {fuel }}}{t}$, then:
$v_{\text {gases }}=\frac{F_{\text {thruss }} t}{m_{\text {fuel }}}$

Also, using Newton's second law we can find the acceleration produced by the thrust:
$a_{\text {thrust }}=\frac{F_{\text {thrust }}}{m_{\text {fuel }}+m_{\text {inert }}}$, at lift-off we need to subtract g from this quantity to get the true acceleration:

$$
a=\frac{F_{\text {thrust }}}{m_{\text {fuel }}+m_{\text {inert }}}-9.8
$$

If $F_{\text {thrust }}=13.2 \times 10^{6} \mathrm{~N}, m_{\text {fuel }}=500,000 \mathrm{~kg}$ and $\mathrm{t}=75 \mathrm{~s}$ then $v_{\text {gases }}=1,980 \mathrm{~m} / \mathbf{s}$
And with an inert mass of $91,000 \mathrm{~kg}$ the acceleration is: $a=\mathbf{1 2 . 5 m} / \mathbf{s}^{\mathbf{2}}$

Problem 2.- A rocket has an initial mass $\mathrm{Mi}=100,000 \mathrm{~kg}$ out of which $86,500 \mathrm{~kg}$ is fuel. The speed of the gases generated by burning the fuel is $2,700 \mathrm{~m} / \mathrm{s}$. Calculate the final speed of the rocket after burning all its fuel starting from zero velocity. Only consider the thrust of the gases, no other forces.

A) $675 \mathrm{~m} / \mathrm{s}$
B) $1,350 \mathrm{~m} / \mathrm{s}$
C) $2,700 \mathrm{~m} / \mathrm{s}$
D) $5,400 \mathrm{~m} / \mathrm{s}$
E) $8,100 \mathrm{~m} / \mathrm{s}$

Solution: The thrust is: $\mathrm{F}=-v_{\text {gases }} \frac{d m}{d t}$, but Newton's second law says:
$\mathrm{F}=m a \rightarrow a=-\frac{v_{\text {gases }} \frac{d m}{d t}}{m}$
$\frac{\mathrm{dv}}{\mathrm{dt}}=-\frac{v_{\text {gases }} \frac{d m}{d t}}{m} \rightarrow \mathrm{dv}=-v_{\text {gases }} \frac{d m}{m}$
Integrating on both sides of the equation we get:
$\int_{0}^{\mathrm{v}} \mathrm{dv}=-v_{\text {gases }} \int_{100000}^{13,500} \frac{d m}{m} \quad$ and that gives: $v=v_{\text {gases }}[\ln (100,000)-\ln (13,500)]=\mathbf{5 , 4 0 0} \mathbf{~ m} / \mathbf{s}$

Answer: D

Problem 3.- Calculate the speed of the gases of the Space Shuttle solid rocket booster that produce a thrust of $F_{\text {thrust }}=12.5 \times 10^{6} \mathrm{~N}$ and burns $499,000 \mathrm{~kg}$ of fuel in 110 seconds.
Solution: We know that thrust is equal to $F_{\text {thrust }}=\frac{d m}{d t} v_{\text {relative }}$
Given the values of the problem we can calculate the speed of the gases relative to the SRB as follows:

$$
v_{\text {relative }}=\frac{F_{\text {thrust }}}{\left(\frac{d m}{d t}\right)}=\frac{12.5 \times 10^{6} \mathrm{~N}}{499,00 \mathrm{~kg} / 110 \mathrm{~s}}=2,755 \mathrm{~m} / \mathrm{s}
$$

Problem 4.- A rocket uses solid fuel whose burned gases have a speed of $2700 \mathrm{~m} / \mathrm{s}$. At what rate do you need to burn the fuel to generate a thrust of $14,400 \mathrm{~N}$?

Solution:
Since: $F_{\text {thrust }}=v_{G}\left|\frac{d m}{d t}\right| \rightarrow 14,400=2,700\left|\frac{d m}{d t}\right| \rightarrow\left|\frac{d m}{d t}\right|=\mathbf{5 . 3} \mathbf{~ k g} / \mathbf{s}$

Problem 5.- A rocket has the following specs:
Initial mass $=M_{o}=21,000 \mathrm{~kg} \quad$ Mass of fuel $=M_{\text {fuel }}=15,000 \mathrm{~kg}$
Relative velocity of gasses: $v_{\text {gases }}=2800 \mathrm{~m} / \mathrm{s}$ Rate of fuel burning: $\frac{d m}{d t}=-190 \mathrm{~kg} / \mathrm{s}$
Find:
a) The thrust force
b) The initial acceleration

Solution Thrust force: $F=\frac{d m}{d t} v_{\text {rel }}=2800 \times 190=\mathbf{5 3 2 , 0 0 0} \mathbf{N}$
Initial acceleration: $a=\frac{F}{m}=\frac{532,000 \mathrm{~N}}{21,000+15,000}=\mathbf{1 4 . 7} \mathbf{~ m} / \mathrm{s}^{2}$
Problem 6.- Given the following conditions, find the height reached by a rocket just after burning all the fuel assuming a vertical trajectory.

Initial mass $=M_{o}=21,000 \mathrm{~kg} \quad$ Mass of fuel $=M_{\text {fuel }}=15,000 \mathrm{~kg}$
Relative velocity: $v_{\text {rel }}=-2800 \mathrm{~m} / \mathrm{s} \quad$ Rate of fuel burning: $\frac{d m}{d t}=-190 \mathrm{~kg} / \mathrm{s}$
Solution: We can calculate the thrust by multiplying relative velocity times the rate of fuel burning:

$$
F_{\text {thrust }}=v_{\text {rel }} \frac{d m}{d t}=5.3 \times 10^{5} \mathrm{~N}
$$

If we want the net force, we need to subtract the weight:
$F=F_{\text {thrust }}-M g=F_{\text {thrust }}-\left(M_{o}+t \frac{d m}{d t}\right) g$
At the instant of launch:
$F=F_{\text {thrust }}-M_{o} g=3.2 \times 10^{5} \mathrm{~N} \quad$ This means an acceleration of $\frac{3.2 \times 10^{5} \mathrm{~N}}{21,000 \mathrm{~kg}}=15.2 \mathrm{~m} / \mathrm{s}^{2}$
Just before burning all the fuel:
$F=F_{\text {thrust }}-\left(M_{o}-M_{\text {fuel }}\right) g=4.7 \times 10^{5} \mathrm{~N}$
This means a final acceleration of $\frac{4.7 \times 10^{5} \mathrm{~N}}{6,000 \mathrm{~kg}}=78.3 \mathrm{~m} / \mathrm{s}^{2}$
This calculation raises the question: Are we justified in using $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ as a constant?
To calculate the velocity, we write:

$$
F=M \frac{d v}{d t}=F_{\text {thrust }}-M g \rightarrow \frac{d v}{d t}=\frac{F_{\text {thrust }}-M g}{M}=\frac{F_{\text {thrust }}}{M_{o}+t \frac{d m}{d t}}-g
$$

We multiply by $d t$ and integrate:

$$
\begin{aligned}
& \int_{0}^{v} d v=\int_{0}^{t} \frac{F_{\text {thrust }} d t}{M_{o}+t \frac{d m}{d t}}-\int_{0}^{t} g d t=\left.F_{\text {thrust }} \frac{\ln \left(M_{o}+t \frac{d m}{d t}\right)}{\frac{d m}{d t}}\right|_{0} ^{t}-g t \rightarrow \\
& v=\frac{F_{\text {thrust }}}{\frac{d m}{d t}} \ln \left(\frac{M_{o}+t \frac{d m}{d t}}{M_{o}}\right)-g t=v_{\text {rel }} \ln \left(1+t \frac{1}{M_{o}} \frac{d m}{d t}\right)-g t
\end{aligned}
$$

To calculate the velocity just after burning all the fuel we put $\mathrm{t}=\frac{15,000 \mathrm{~kg}}{190 \mathrm{~kg} / \mathrm{s}}=78.9 \mathrm{~s}$ in the equation above:

$$
v=-2800 \frac{\mathrm{~m}}{\mathrm{~s}} \ln \left(1-\frac{78.9 \mathrm{~s}}{110.5 \mathrm{~s}}\right)-9.8 \frac{\mathrm{~m}}{\mathrm{~s}}(78.9 \mathrm{~s})=2,730 \mathrm{~m} / \mathrm{s}
$$

If we want the distance traveled, we can solve this last equation as follows:

$$
\frac{d x}{d t}=v_{r e l} \ln \left(1+t \frac{1}{M_{o}} \frac{d m}{d t}\right)-g t \rightarrow x=v_{r e l} \int_{0}^{t} \ln \left(1+t \frac{1}{M_{o}} \frac{d m}{d t}\right) d t-\frac{1}{2} g t^{2}
$$

Recall from calculus that:

$$
\int_{0}^{t} \ln (1+c t) d t=\left(t+\frac{1}{c}\right) \ln (1+c t)-t, \mathrm{so}: \quad x=v_{r e l}\left(t+\frac{M_{o}}{\frac{d m}{d t}}\right) \ln \left(1+t \frac{1}{M_{o}} \frac{d m}{d t}\right)-v_{r e l} t-\frac{1}{2} g t^{2}
$$

With the values of the problem:

$$
x=-2800 \frac{m}{s}\left[(t-110.5 s) \ln \left(1-\frac{t}{110.5 s}\right)-t\right]-4.9 \frac{m}{s^{2}} t^{2}
$$

To calculate the value of x just after burning all the fuel we put $\mathrm{t}=\frac{15,000 \mathrm{~kg}}{190 \mathrm{~kg} / \mathrm{s}}=78.9 \mathrm{~s}$ in the equation above:

$$
x=-2800 \frac{m}{s}\left[(78.9 s-110.5 s) \ln \left(1-\frac{78.9 s}{110.5 s}\right)-78.9 s\right]-4.9 \frac{m}{s^{2}}(78.9 s)^{2}=79,700 m
$$

Now we can answer the question of whether we were justified in using g as a constant: At a height of $79,600 \mathrm{~m}$ the acceleration due to gravity is:

$$
g=G \frac{M_{\text {Earth }}}{\left(R_{\text {Earth }}+h\right)^{2}}=\left[G \frac{M_{\text {Earth }}}{R_{\text {Earth }}^{2}}\right] \frac{R_{\text {Earth }}^{2}}{\left(R_{\text {Earth }}+h\right)^{2}}=g \frac{R_{\text {Earth }}^{2}}{\left(R_{\text {Earrh }}+h\right)^{2}}=g \frac{1}{\left(1+\frac{h}{R_{\text {Earth }}}\right)^{2}}
$$

So, gis: $\frac{9.8 m / s^{2}}{\left(1+\frac{79,700 m}{6^{\prime} 380,000 m}\right)^{2}}=9.56 \mathrm{~m} / \mathrm{s}^{2}$, a 2.5% correction.

