Physics I

Gravitation

Force between two bodies of mass m_{1} and $\mathrm{m}_{2}: F=G \frac{m_{1} m_{2}}{\mathrm{r}^{2}}$, where $G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$
Acceleration due to gravity on the surface of a planet: $g_{\text {planet }}=G \frac{m_{\text {planet }}}{r_{\text {planet }}^{2}}$
Gravitational potential energy P.E. $=m g h \ldots$ close to the surface of the Earth
But P.E. $=-G \frac{M m}{r}$ is more general, with the reference is at infinity.
Problem 1.- A mass of 4 kg is placed at the origin and a mass of 9 kg is placed at $L=+15$ meters as shown in the figure. At what point on the x -axis will a test mass of \boldsymbol{m} kilograms experience zero net force?

Solution: Suppose the third mass \boldsymbol{m} is at a position x from the 4 kg mass, then the distance to the 9 kg mass will be 15-x and the two attractive forces have to be equal to be in equilibrium, so:

$G \frac{4 m}{x^{2}}=G \frac{9 m}{(15-x)^{2}} \rightarrow \frac{4}{x^{2}}=\frac{9}{(15-x)^{2}} \rightarrow \frac{2}{x}=\frac{3}{15-x} \rightarrow 30-2 x=3 x \rightarrow x=6 \mathbf{m}$

Problem 2.- Calculate the acceleration due to gravity on the surface of Ganymede (a satellite of Jupiter visible in binoculars), which has 0.0248 times the mass of the Earth and whose radius is 0.413 times the radius of the Earth.

Solution: For Ganymede:
$g_{\text {Ganymede }}=G \frac{m_{\text {Ganymede }}}{r_{\text {Ganymede }}^{2}}=G \frac{\left(0.0248 m_{\text {Earrh }}\right)}{\left(0.413 r_{\text {Earth }}\right)^{2}}=\frac{(0.0248)}{(0.413)^{2}}\left(G \frac{m_{\text {Earth }}}{r_{\text {Earth }}^{2}}\right)$

But the quantity in parenthesis is our beloved $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$, so:

$$
g_{\text {Ganymede }}=\frac{(0.0248)}{(0.413)^{2}}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=1.43 \mathrm{~m} / \mathbf{s}^{2}
$$

Problem 2a.- Calculate the acceleration due to gravity on the surface of Ceres ($\mathrm{g}_{\text {ceres }}$). Ceres is one of the largest known asteroids in the solar system. For your calculation assume the asteroid has the shape of a sphere with radius 460 km and mass $7.4 \times 10^{21} \mathrm{~kg}$.

Solution: Let us use the equation: $g_{\text {planet }}=G \frac{m_{\text {planet }}}{r_{\text {planet }}^{2}}$
With the values given, we get:

$$
g_{\text {Ceres }}=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} \frac{7.4 \times 10^{21} \mathrm{~kg}}{(460,000 \mathrm{~m})^{2}}=\mathbf{2 . 3 3 ~ \mathrm { m } / \mathrm { s } ^ { 2 }}
$$

Problem 2c.- Calculate the acceleration due to gravity on the surface of Mars, which has 0.11 times the mass of the Earth and whose radius is 0.53 times the radius of the Earth.

Solution:

For Mars: $\quad g_{\text {Mars }}=G \frac{m_{\text {Mars }}}{r_{\text {Mars }}^{2}}=G \frac{\left(0.11 m_{\text {Earth }}\right)}{\left(0.53 r_{\text {Earh }}\right)^{2}}=\frac{(0.11)}{(0.53)^{2}}\left(G \frac{m_{\text {Earth }}}{r_{\text {Earhh }}^{2}}\right)$

But the quantity in parenthesis is $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$,
$g_{\text {Mars }}=\frac{(0.11)}{(0.53)^{2}}\left(9.8 \frac{m}{s^{2}}\right)=\mathbf{3 . 8 4} \mathbf{~ m} / \mathbf{s}^{2}$

For Jupiter: $g_{\text {Jupiter }}=G \frac{m_{\text {Jupiter }}}{r_{\text {Jupiter }}^{2}}=G \frac{\left(318 m_{\text {Earth }}\right)}{\left(10.97 r_{\text {Earth }}\right)^{2}}=\frac{(318)}{(10.97)^{2}}\left(G \frac{m_{\text {Earth }}}{r_{\text {Earth }}^{2}}\right)$
$g_{\text {Jupiter }}=\frac{(318)}{(10.97)^{2}}\left(9.8 \frac{m}{s^{2}}\right)=\mathbf{2 5 . 9} \mathbf{~ m} / \mathbf{s}^{2}$
For Venus: $g_{\text {Venus }}=G \frac{m_{\text {Venus }}}{r_{\text {Venus }}^{2}}=G \frac{\left(0.88 m_{\text {Earth }}\right)}{\left(0.95 r_{\text {Earth }}\right)^{2}}=\frac{(0.88)}{(0.95)^{2}}\left(G \frac{m_{\text {Earth }}}{r_{\text {Earth }}^{2}}\right)$
$g_{\text {Venus }}=\frac{(0.88)}{(0.95)^{2}}\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=\mathbf{9 . 5 6} \mathbf{~ m} / \mathrm{s}^{2}$

For Mercury: $g_{\text {Mercury }}=G \frac{m_{\text {Mercury }}}{r_{\text {Mercury }}^{2}}=G \frac{\left(0.0553 m_{\text {Earth }}\right)}{\left(0.383 r_{\text {Earth }}\right)^{2}}=\frac{(0.0553)}{(0.383)^{2}}\left(G \frac{m_{\text {Earth }}}{r_{\text {Earth }}^{2}}\right)$ $g_{\text {Mercury }}=\frac{(0.0553)}{(0.383)^{2}}\left(9.8 \frac{m}{s^{2}}\right)=3.7 \mathrm{~m} / \mathbf{s}^{2}$

Problem 2d.- What is the acceleration due to gravity on the surface of Pluto given that its radius is 0.18 the radius of the Earth and its mass is 0.0021 the mass of the Earth.

Solution: $g_{\text {pluto }}=G \frac{0.0021 M_{E}}{\left(0.18 R_{E}\right)^{2}}=\left(G \frac{M_{E}}{R_{E}{ }^{2}}\right) \frac{0.0021}{0.18^{2}}=(9.8) \frac{0.0021}{0.18^{2}}=\mathbf{0 . 6 3 5} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$

Problem 3.- What would be the speed of an object that falls straight towards the Earth from a height of $\mathrm{h}=4 \times 10^{6} \mathrm{~m}$ when it reaches the surface of our planet?
[Ignore air resistance, assume initial velocity zero]
[Radius of the Earth $\mathrm{R}=6.38 \times 10^{6} \mathrm{~m}$]
Solution: $P E=K E \rightarrow m g h\left(\frac{R_{E}^{2}}{R_{1} R_{2}}\right)=\frac{1}{2} m v^{2} \rightarrow v=\sqrt{2 g h\left(\frac{R_{E}^{2}}{R_{1} R_{2}}\right)}$
$\rightarrow v=\sqrt{2 \times 9.8 \times 4 \times 10^{6}\left(\frac{6.38 \times 10^{6}}{6.38 \times 10^{6}+4 \times 10^{6}}\right)}=\mathbf{6 , 9 0 0} \mathrm{m} / \mathrm{s}$

Problem 4.- Find the escape velocity from the surface of Mars whose mass is $0.64 \times 10^{24} \mathrm{~kg}$ and a radius of $3.39 \times 10^{6} \mathrm{~m}$.

Solution Since the total energy is zero to escape:

$$
\frac{1}{2} m v^{2}-G \frac{M m}{R}=0 \rightarrow v=\sqrt{\frac{2 G M}{R}}=\sqrt{\frac{2\left(6.67 \times 10^{-11}\right)\left(0.64 \times 10^{24}\right)}{3.39 \times 10^{6}}}=\mathbf{5 , 0 1 8} \mathbf{~ m} / \mathbf{s}
$$

Problem 4a.- Calculate the escape velocity from the surface of Pluto. For your calculation assume it has the shape of a sphere with radius $1,153 \mathrm{~km}$ and mass $1.305 \times 10^{22} \mathrm{~kg}$.

Solution: We use the equation for total energy:
$0=-G \frac{M m}{R}+\frac{1}{2} m v^{2} \rightarrow v=\sqrt{\frac{2 G M}{R}}=\sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 1.305 \times 10^{22}}{1,153,000}}=\mathbf{1 , 2 2 8} \mathbf{~ m} / \mathbf{s}$

Problem 4b.- Calculate the escape velocity from the surface of Ceres. Ceres is one of the largest known asteroids in the solar system. For your calculation assume the asteroid has the shape of a sphere with radius 460 km and mass $7.4 \times 10^{21} \mathrm{~kg}$.

Solution: If an object is going to leave the asteroid, it must have zero total energy:
$-G \frac{M m}{R}+\frac{1}{2} m v^{2}=0 \rightarrow v=\sqrt{\frac{2 G M}{R}}=\sqrt{2 \times 6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} \frac{7.4 \times 10^{21} \mathrm{~kg}}{(460000 \mathrm{~m})}}=\mathbf{1 , 4 7 0} \mathbf{~ m} / \mathrm{s}$

Problem 5.- Calculate the acceleration due to gravity on the surface of a small planet that has 0.125 times the mass and 0.5 times the radius of our planet.

Solution: $\mathrm{a}_{\mathrm{R}}=\mathrm{G} \frac{\mathrm{M}}{\mathrm{R}^{2}}=\mathrm{G} \frac{0.125 \mathrm{M}_{\mathrm{E}}}{\left(0.5 \mathrm{R}_{\mathrm{E}}\right)^{2}}=0.5 \mathrm{G} \frac{\mathrm{M}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{E}}{ }^{2}} 0.5 \times 9.8=4.9 \mathrm{~m} / \mathrm{s}^{2}$

Problem 5a.- Calculate the acceleration due to gravity on the surface of a giant planet that has 195 times the mass and 8 times the radius of our planet.
Solution: We want $g_{\text {planet }}=G \frac{m_{\text {planet }}}{r_{\text {planet }}^{2}}$, given that the mass of the planet is 195 times the mass of Earth and radius 8 the radius of Earth:

$$
\mathrm{g}_{\text {planet }}=\mathrm{G} \frac{195 \mathrm{~m}_{\text {Earth }}}{\left(8 \mathrm{r}_{\text {Earth }}\right)^{2}}=\frac{195}{64} \mathrm{G} \frac{\mathrm{~m}_{\text {Earth }}}{\left(\mathrm{r}_{\text {Earth }}\right)^{2}}=\frac{195}{64} \mathrm{~g}_{\text {Earth }}=\frac{195}{64}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=29.9 \mathrm{~m} / \mathbf{s}^{2}
$$

Problem 5b.- Find the escape velocity from the surface of the planet mentioned in the previous problem.

Solution: If the object is going to escape, it should have at least zero total energy:

$$
\frac{1}{2} \mathrm{mv}^{2}-\mathrm{G} \frac{\mathrm{mM}}{\mathrm{R}}=0 \rightarrow v=\sqrt{\frac{2 G M}{R}}=\sqrt{\frac{2\left(6.67 \times 10^{-11}\right)\left(195 \times 5.98 \times 10^{24}\right)}{8 \times 6.38 \times 10^{6}}}=\mathbf{5 5 , 2 0 0} \mathrm{m} / \mathbf{s}
$$

Problem 6.- Gravity is usually neglected in condensed matter and atomic physics because it is extremely weak compared to electromagnetic forces. To convince yourself that this is true: Calculate the gravitational attraction between an electron and an alpha particle (a helium nucleus) separated by 1 nm . (1 nm is $10^{-9} \mathrm{~m}$)
Mass of the electron $=9.1 \times 10^{-31} \mathrm{~kg}$
Mass of the alpha particle $=6.7 \times 10^{-27} \mathrm{~kg}$

Solution: Gravitational force between an alpha particle and an electron separated 1 nm :

$$
F=6.67 \times 10^{-11} \frac{\left(9.1 \times 10^{-31} \mathrm{~kg}\right)\left(6.7 \times 10^{-27} \mathrm{~kg}\right)}{\left(1 \times 10^{-9} \mathrm{~m}\right)^{2}}=4.07 \times 10^{-49} \mathrm{~N}
$$

Problem 7.- Planet Y has twice the value of g as our planet $\left(19.6 \mathrm{~m} / \mathrm{s}^{2}\right)$ and it has 8 times the mass of Earth. What is the radius of planet Y?

Answer in terms of our planet's radius $\left(\mathrm{R}_{\mathrm{E}}\right)$.
(A) $0.5 \mathrm{R}_{\mathrm{E}}$
(B) R_{E}
(C) $2 \mathrm{R}_{\mathrm{E}}$
(D) $4 R_{E}$
(E) $16 \mathrm{R}_{\mathrm{E}}$

Solution: $2 g=G \frac{M_{P}}{R_{P}{ }^{2}}$ and $g=G \frac{M_{E}}{R_{E}{ }^{2}}$,
Dividing one equation by the other:
$\frac{2 g}{g}=\frac{G \frac{M_{P}}{R_{P}{ }^{2}}}{G \frac{M_{E}}{R_{E}{ }^{2}}} \rightarrow 2=\frac{8 R_{E}{ }^{2}}{R_{P}{ }^{2}} \rightarrow R_{P}=2 R_{E}$
Problem 8.- Calculate the force due to gravity on a satellite of mass 84 kg located 3 Earth radii away from the surface of the Earth.

Solution: The force is $F=G \frac{m_{1} m_{2}}{d^{2}}$, but $d=4 R_{E}$, so $F=G \frac{M_{\text {Earth }} 84}{16 R_{E}{ }^{2}}=\frac{84}{16} \times 9.8=\mathbf{5 1 . 5} \mathbf{N}$
Problem 9.- How far from the surface of the Earth would you have to go to have acceleration due to gravity of only $1 / 1000$ of the value at the Earth surface?

Solution: The force due to gravity is inversely proportional to the distance to the center of the planet, so: $\frac{r_{\text {planet }}^{2}}{x^{2}}=\frac{1}{1000} \rightarrow x=31.6 r_{\text {planet }}$

This is the distance between the planet center and the object, so $\mathbf{3 0 . 6}$ radii from the surface.
Problem 10.- It is common to hear that people inside a space station, in orbit around the Earth, experiment "zero gravity". Is the gravity really zero inside the station?

Solution: Not really. People inside the space station are accelerated towards the center of the Earth. In a sense they are falling. For Low Earth Orbits (LEOs) the acceleration due to gravity (g) is $\sim 90 \%$ of the value on the surface.

