Physics I

Kinetic Energy

Kinetic energy in linear motion
Kinetic energy in rotational motion
K.E. $=\frac{1}{2} m v^{2}$
$K . E .=\frac{1}{2} I \omega^{2}$

Average kinetic energy in gas molecules due to thermal motion $=\langle K E\rangle=\frac{3}{2} k_{B} T=\frac{1}{2} m v_{r m s}^{2}$

Problem 1.- Calculate the kinetic energy stored in the rotor of an electric motor whose radius is 0.25 m , mass 16 kg and angular velocity 3600 rpm . Approximate the moment of inertia of the rotor to one of a solid cylinder: $\frac{1}{2} \mathrm{MR}^{2}$.

Problem 1a.- Calculate the kinetic energy stored in an audio CD when it rotates at its maximum speed of 500 rpm (revolutions per minute). Approximate the moment of inertia of the CD to one of a disk: $\frac{1}{2} \mathrm{MR}^{2}$, consider its mass to be 0.015 kg and its radius 0.060 m

Problem 1b.- Calculate the total kinetic energy of a barrel that rolls without slipping at $4.0 \mathrm{~m} / \mathrm{s}$ if its mass is 120 kg and its radius is 0.35 m . Assume that it is a solid cylinder. (Moment of inertia of a solid cylinder $=1 / 2 \mathrm{MR}^{2}$)

Problem 2.- Calculate the rms speed of a molecule that has a mass of 75 amu if the temperature is $37^{\circ} \mathrm{C}$.
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$
Problem 2a.- At room temperature (300 K), a helium atom, with mass 4 amu , typically has a kinetic energy of $6.21 \times 10^{-21} \mathrm{~J}$. Calculate its speed.
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$
Problem 2b.- In principle, can we separate N_{2} from O_{2} by diffusion? What is the ratio of speeds of these two molecules at room temperature?

Problem 2c.- Calculate the rms speed of hydrogen molecules present in the atmosphere at $\mathrm{T}=27^{\circ} \mathrm{C}$.

Problem 3.- Calculate the kinetic energy stored in a rotating hydrogen molecule that has a moment of inertia of $\mathrm{I}=9.56 \times 10^{-48} \mathrm{kgm}^{2}$ and is in the first rotational excited state that has an angular momentum squared $L^{2}=2 \hbar^{2}$, where $\hbar=1.05 \times 10^{-34} \mathrm{~J} s$

Problem 4.- Which has more energy: An $80-\mathrm{kg}$ athlete running at $8.5 \mathrm{~m} / \mathrm{s}$ or a $7-\mathrm{g}$ bullet at 350 m / s ?

Problem 5.- A person works out in the stair machine for half an hour. The work done is equivalent to a real climb of 150 meters. Calculate how many Calories were burnt if the person has a mass of 60 kg and the efficiency is 20%.

