Physics I

Kinetic Energy

Kinetic energy in linear motion

$$
\text { K.E. }=\frac{1}{2} m v^{2}
$$

Kinetic energy in rotational motion $\quad K . E .=\frac{1}{2} I \omega^{2}$
Average kinetic energy in gas molecules due to thermal motion $=\langle K E\rangle=\frac{3}{2} k_{B} T=\frac{1}{2} m v_{r m s}^{2}$

Problem 1.- Calculate the kinetic energy stored in the rotor of an electric motor whose radius is 0.25 m , mass 16 kg and angular velocity 3600 rpm . Approximate the moment of inertia of the rotor to one of a solid cylinder: $\frac{1}{2} \mathrm{MR}^{2}$.

Solution: First, we convert $\omega=3600 \frac{\mathrm{rev}}{\mathrm{min}}\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)\left(\frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}}\right)=377 \mathrm{rad} / \mathrm{s}$
Then:
$K . E_{\text {rotational }}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}\right) \omega^{2}=\frac{1}{2}\left(\frac{1}{2} \times 16 \times 0.25^{2}\right) 377^{2}=\mathbf{3 5 , 5 0 0} \mathbf{~ J}$
Problem 1a.- Calculate the kinetic energy stored in an audio $C D$ when it rotates at its maximum speed of 500 rpm (revolutions per minute). Approximate the moment of inertia of the CD to one of a disk: $\frac{1}{2} \mathrm{MR}^{2}$, consider its mass to be 0.015 kg and its radius 0.060 m
Solution: The rotational kinetic energy is given by $K . E .=\frac{1}{2} I \omega^{2}$, so we need to calculate the moment of inertia and the angular velocity:

Moment of inertia:
$I=\frac{1}{2} M R^{2}=\frac{1}{2}(0.015 \mathrm{~kg})(0.06 \mathrm{~m})^{2}=2.7 \times 10^{-5} \mathrm{kgm}^{2}$
If it rotates at $500 \mathrm{rpm}, \quad \omega=500 \mathrm{rpm}=500 \frac{\mathrm{rev}}{\min }\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)\left(\frac{2 \pi}{1 \mathrm{rev}}\right)=52.4 \mathrm{rad} / \mathrm{s}$
Then the kinetic energy is: $K . E .=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(2.7 \times 10^{-5} \mathrm{kgm}^{2}\right)(52.4 \mathrm{rad} / \mathrm{s})^{2}=\mathbf{0 . 0 3 7} \mathbf{~ J}$

Problem 1b.- Calculate the total kinetic energy of a barrel that rolls without slipping at $4.0 \mathrm{~m} / \mathrm{s}$ if its mass is 120 kg and its radius is 0.35 m . Assume that it is a solid cylinder. (Moment of inertia of a solid cylinder $=1 / 2 \mathrm{MR}^{2}$)

Solution: There are two kinds of kinetic energy, rotational and translational, so we need to add them:

$$
K . E .=\frac{1}{2} I \omega^{2}+\frac{1}{2} M v^{2}=\frac{1}{2} \frac{1}{2} M R^{2} \omega^{2}+\frac{1}{2} M v^{2}=\frac{3}{4} M v^{2}
$$

Where we replaced the moment of inertia given and $R \omega=v$, so the kinetic energy is:

$$
K . E .=\frac{3}{4} M v^{2}=\frac{3}{4}(120 \mathrm{~kg})(4 \mathrm{~m} / \mathrm{s})^{2}=\mathbf{1}, 440 \mathrm{~J}
$$

Problem 2.- Calculate the rms speed of a molecule that has a mass of 75 amu if the temperature is $37^{\circ} \mathrm{C}$.

```
1 amu=1.66\times10-27 kg
```

Solution: The kinetic energy is given by $K . E .=\frac{m v^{2}}{2}$, but also by $\langle K . E\rangle=.\frac{3}{2} k_{B} T$, so we can combine the two equations to get the rms speed (average speed):

$$
\frac{m v^{2}}{2}=\frac{3}{2} k_{B} T \rightarrow v=\sqrt{\frac{3 k_{B} T}{m}}=\sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 310}{75 \times 1.66 \times 10^{-27}}}=\mathbf{3 2 0} \mathbf{~ m} / \mathrm{s}
$$

Problem 2a.- At room temperature (300K), a helium atom, with mass 4 amu , typically has a kinetic energy of $6.21 \times 10^{-21} \mathrm{~J}$. Calculate its speed.
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$
Solution: Similar to the previous problem, the kinetic energy is translational, and we get

$$
\frac{1}{2} m v^{2}=K . E . \rightarrow v=\sqrt{\frac{2 K . E .}{m}}=\sqrt{\frac{2\left(6.21 \times 10^{-21} J\right)}{4\left(1.66 \times 10^{-27} \mathrm{~kg}\right)}}=\mathbf{1 , 3 7 0} \mathrm{m} / \mathrm{s}
$$

Problem 2b.- In principle, can we separate N_{2} from O_{2} by diffusion? What is the ratio of speeds of these two molecules at room temperature?

Solution: In principle, yes, we can we separate N_{2} from O_{2} by diffusion, because the nitrogen molecules are faster by a ratio:
$\frac{\mathrm{v}_{\text {Nitrogen }}}{\mathrm{v}_{\text {Oxygen }}}=\sqrt{\frac{32}{28}}=\mathbf{1 . 0 7}$

Problem 2c.- Calculate the rms speed of hydrogen molecules present in the atmosphere at $\mathrm{T}=27^{\circ} \mathrm{C}$.
Solution: Since K.E. $=\frac{1}{2} \mathrm{mv}_{\mathrm{rms}}^{2}=\frac{3}{2} \mathrm{Nk}_{\mathrm{B}} \mathrm{T} \rightarrow \mathrm{v}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{k}_{\mathrm{B}} \mathrm{T}}{\mathrm{m}}}$

In this equation $T=27+273=300 \mathrm{~K}$, so:

$$
\mathrm{v}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~m}}}=\sqrt{\frac{3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(300 \mathrm{~K})}{2 \times 1.66 \times 10^{-27} \mathrm{~kg}}}=\mathbf{1 , 9 3 0} \mathrm{m} / \mathrm{s}
$$

Problem 3.- Calculate the kinetic energy stored in a rotating hydrogen molecule that has a moment of inertia of $\mathrm{I}=9.56 \times 10^{-48} \mathrm{kgm}^{2}$ and is in the first rotational excited state that has an angular momentum squared $L^{2}=2 \hbar^{2}$, where $\hbar=1.05 \times 10^{-34} \mathrm{JS}$
Solution: The rotational kinetic energy is given by: $E=\frac{1}{2} I \omega^{2}=\frac{L^{2}}{2 I}$, so all we need to do is calculate this energy with the given value of L^{2}.
$E=\frac{L^{2}}{2 I}=\frac{2\left(1.05 \times 10^{-34} \mathrm{JS}\right)^{2}}{2\left(9.56 \times 10^{-48} \mathrm{kgm}^{2}\right)}=\mathbf{1 . 1 6 \times 1 0} \mathbf{0}^{-21} \mathbf{J}$
This is a very small quantity but converted to temperature (after dividing by Boltzmann constant) it is 84 K !, which is higher than liquid nitrogen.

Problem 4.- Which has more energy: An $80-\mathrm{kg}$ athlete running at $8.5 \mathrm{~m} / \mathrm{s}$ or a $7-\mathrm{g}$ bullet at 350 m / s ?

Solution:

$$
\begin{aligned}
& \text { K.E }_{\text {athlete }}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2}(80 \mathrm{~kg})(8.5 \mathrm{~m} / \mathrm{s})^{2}=\mathbf{2 , 8 9 0} \mathbf{J} \\
& \text { K.E }_{\text {bullet }}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2}(0.007 \mathrm{~kg})(350 \mathrm{~m} / \mathrm{s})^{2}=\mathbf{4 2 9} \mathbf{~ J}
\end{aligned}
$$

The athlete has more kinetic energy!

Problem 5.- A person works out in the stair machine for half an hour. The work done is equivalent to a real climb of 150 meters. Calculate how many Calories were burnt if the person has a mass of 60 kg and the efficiency is 20%.

Solution: In a real climb of 150 meters the work would be against gravity and its value can be calculated by multiplying the weight times the height:
$\mathrm{W}=60 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 150 \mathrm{~m}=88,200 \mathrm{~J}$
However, the efficiency is 20%, so the energy spent doing that work is

$$
\mathrm{E}=\frac{\mathrm{W}}{\eta}=\frac{88,200}{20 \%}=441,000 \mathrm{~J}
$$

We convert this to calories:
$\mathrm{E}=441,000 \mathrm{~J}\left(\frac{1 \mathrm{Cal}}{4,184 \mathrm{~J}}\right)=\mathbf{1 0 5} \mathbf{C a l}$

