Physics I

Potential function

Problem 1.- What would be the kinetic energy of a 0.454 kg object that falls straight towards the earth from a height of $\mathrm{h}=4 \times 10^{6} \mathrm{~m}$ when it reaches the surface of our planet?
Ignore air resistance and assume initial velocity zero.
Mass of the Earth $\mathrm{M}=5.98 \times 10^{24} \mathrm{~kg}$. Radius of the Earth $\mathrm{R}=6.38 \times 10^{6} \mathrm{~m}$
Problem 2.- The potential energy for an electron in a quantum dot is described by the equation:
$U=\frac{a}{r^{2}}-\frac{b}{r}$
a) Calculate the point r_{o} where the potential energy reaches its minimum.
b) Find the binding energy (U at the minimum point).

Problem 3.- How high will a projectile get if it is launched straight up with an initial velocity of $5,000 \mathrm{~m} / \mathrm{s}$ from the surface of the Earth. Ignore air resistance and take $M_{\text {Earth }}=5.98 \times 10^{24} \mathrm{~kg}$ and $R_{\text {Earth }}=6.38 \times 10^{6} \mathrm{~m}$

