Physics I

Potential function

Problem 1.- What would be the kinetic energy of a 0.454kg object that falls straight towards the earth from a height of $h = 4 \times 10^6$ m when it reaches the surface of our planet? Ignore air resistance and assume initial velocity zero. Mass of the Earth M = 5.98×10^{24} kg. Radius of the Earth R = 6.38×10^6 m

Problem 2.- The potential energy for an electron in a quantum dot is described by the equation:

$$U = \frac{a}{r^2} - \frac{b}{r}$$

- a) Calculate the point r_0 where the potential energy reaches its minimum.
- b) Find the binding energy (U at the minimum point).

Problem 3.- How high will a projectile get if it is launched straight up with an initial velocity of 5,000 m/s from the surface of the Earth. Ignore air resistance and take $M_{Earth} = 5.98 \times 10^{24} kg$ and $R_{Earth} = 6.38 \times 10^6 m$