Physics I

Power

Power $=\frac{\text { Work }}{\text { time }}$ or Power $=F v \cos L_{F}^{v}$
$1 \mathrm{HP}=746 \mathrm{~W}$
Problem 1.- Calculate the power delivered by a dog who pulls a sled a constant speed of $2.5 \mathrm{~m} / \mathrm{s}$. Consider the mass of the sled to be 45 kg and the coefficient of friction between sled and ice to be $\mu=0.085$

Problem 1a.- Calculate how many dogs you need to pull a loaded sled at constant speed of 1.5 m / s knowing that the mass of the sled plus its cargo is 450 kg and the coefficient of friction between sled and ice is $\mu=0.085$
Consider that 1 DP (dog power) is 94 watts.

Problem 2.- At what rate (power) is a 45.0 kg boy using energy when he runs up a flight of stairs 10.0 m high in 8.0 s ?

Problem 2a.- At what rate (power) is a firefighter using energy when he climbs up the stairs of a building 40.0 m high in 68 s ? Consider the mass of the firefighter to be 75 kg and the gear he is carrying an additional mass of 30 kg .

Problem 3.- How much power do you need to pump 100 kg of water per second to a height of 15.3 m ? Assume 100% efficiency.

Problem 4.- An $800-\mathrm{kg}$ sports car accelerates from rest to $100 \mathrm{~km} / \mathrm{h}$ in 6.0 s . How much average power is delivered by the engine? Give the answer in HP.

Problem 5.- A Ferrari 612 Scaglietti has an engine that delivers a power of 540 HP at $7,250 \mathrm{rpm}$. Find the torque in Nm at this peak condition.

Problem 6.- An 80 kg skydiver leaps out of an air balloon and quickly reaches a terminal speed of $110 \mathrm{~m} / \mathrm{s}$. Calculate the power delivered by air resistance.

Problem 7.- A cyclist does work at 600 W while riding. How much force is applied on the bicycle if its speed is $8.0 \mathrm{~m} / \mathrm{s}$?

