Physics I

Power

Power $=\frac{\text { Work }}{\text { time }}$ or Power $=F v \cos L_{F}^{v}$
$1 \mathrm{HP}=746 \mathrm{~W}$
Problem 1.- Calculate the power delivered by a dog who pulls a sled a constant speed of $2.5 \mathrm{~m} / \mathrm{s}$. Consider the mass of the sled to be 45 kg and the coefficient of friction between sled and ice to be $\mu=0.085$

Solution: We can use the equation Power $=\mathrm{Fv} \cos \angle_{\mathrm{F}}^{\mathrm{V}}$
The problem gives $\mathrm{v}=2.5 \mathrm{~m} / \mathrm{s}$ and the force can be easily calculated using the equation:

$$
F_{\text {friction }}=\mu_{\mathrm{K}} \mathrm{~F}_{\text {Normal }}=0.085 \mathrm{mg}=0.085 \times 45 \times 9.8=37.5 \mathrm{~N}
$$

The angle is zero, so the cosine is one, then:
Power $=37.5 \mathrm{~N} \times 2.5 \mathrm{~m} / \mathrm{s}=94.7$ watts
We can call this a DP (dog power) instead of its counterpart HP.
Problem 1a.- Calculate how many dogs you need to pull a loaded sled at constant speed of 1.5 m / s knowing that the mass of the sled plus its cargo is 450 kg and the coefficient of friction between sled and ice is $\mu=0.085$
Consider that 1 DP (dog power) is 94 watts.

Solution: We can use the equation Power $=\mathrm{Fv} \cos \angle_{\mathrm{F}}^{\mathrm{v}}$
The problem gives $\mathrm{v}=1.5 \mathrm{~m} / \mathrm{s}$ and the force can be easily calculated using the equation:

$$
\mathrm{F}_{\text {friction }}=\mu_{\mathrm{K}} \mathrm{~F}_{\text {Normal }}=0.085 \mathrm{mg}=0.085 \times 450 \times 9.8=375 \mathrm{~N}
$$

The angle is zero, so the cosine is one, then: Power $=375 N \times 1.5 \mathrm{~m} / \mathrm{s}=\mathbf{5 6 2}$ watts.
The number of dogs we need is $\frac{562 \text { watts }}{94 \text { watts } / \text { dog }}=\mathbf{6}$ dogs.

Problem 2.- At what rate (power) is a 45.0 kg boy using energy when he runs up a flight of stairs 10.0 m high in 8.0 s ?

Solution: By definition, power is work divided by time: $\mathrm{P}=\mathrm{W} / \mathrm{t}$, but the work done here is the change in potential energy (mgh) so:

$$
P=\frac{m g h}{t}=\frac{45 \mathrm{~kg}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(10 \mathrm{~m})}{8.0 \mathrm{~s}}=\mathbf{5 5 1} \mathbf{~ W}
$$

Problem 2a.- At what rate (power) is a firefighter using energy when he climbs up the stairs of a building 40.0 m high in 68 s ? Consider the mass of the firefighter to be 75 kg and the gear he is carrying an additional mass of 30 kg .

Solution: The amount of work is given by: $W=m g h$, because the work is done against the force of gravity. Be careful to include the mass of the gear in that calculation, so:
$W=(75 \mathrm{~kg}+30 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(40.0 \mathrm{~m})=41,160 \mathrm{~J}$
By definition, the power is work divided by time, so:
If the time is $\mathrm{t}=68 \mathrm{~s} \quad P=\frac{\text { Work }}{\text { time }}=\frac{41,160 \mathrm{~J}}{68 s}=\mathbf{6 0 5} \mathbf{W}$
Problem 3.- How much power do you need to pump 100 kg of water per second to a height of 15.3 m ? Assume 100% efficiency.

Solution: The definition of power is:

$$
\text { Power }=\frac{\text { Energy }}{\text { time }}=\frac{m g h}{\text { time }}=\frac{100 \mathrm{~kg}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(15.3 \mathrm{~m})}{\mathrm{s}}=\mathbf{1 5} \mathbf{~ k W}
$$

Problem 4.- An $800-\mathrm{kg}$ sports car accelerates from rest to $100 \mathrm{~km} / \mathrm{h}$ in 6.0 s . How much average power is delivered by the engine? Give the answer in HP.

Solution: By definition, power is work divided by time: $\mathrm{P}=\mathrm{W} / \mathrm{t}$, but the work done here is equal to the change in kinetic energy $\left(\frac{1}{2} \mathrm{mv}^{2}\right)$ so:
$v=100 \frac{\mathrm{~km}}{\mathrm{~h}}\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=27.8 \mathrm{~m} / \mathrm{s}$
$P=\frac{\frac{1}{2} m v^{2}}{t}=\frac{800 \mathrm{~kg}(27.8 \mathrm{~m} / \mathrm{s})^{2}}{2(6.0 \mathrm{~s})}=51,400 \mathrm{~W}$
Converting to HP:
$P=51,400 W\left(\frac{1 H P}{746 W}\right)=69 \mathbf{H P}$
Problem 5.- A Ferrari 612 Scaglietti has an engine that delivers a power of 540 HP at $7,250 \mathrm{rpm}$. Find the torque in Nm at this peak condition.
Solution: Power $=\tau \omega \rightarrow \tau=\frac{\text { power }}{\omega}$
We need the power in watts: power $=540 H P\left(\frac{746 W}{1 H P}\right)=402,840 \mathrm{~W}$
The angular velocity in radians per second:
$\omega=7250 \frac{\mathrm{rev}}{\min }\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)\left(\frac{2 \pi \mathrm{rad}}{1 r e v}\right)=759 \mathrm{rad} / \mathrm{s}$,
The torque is: $\tau=\frac{402,840 \mathrm{~W}}{759 \mathrm{rad} / \mathrm{s}}=\mathbf{5 3 0} \mathbf{~ N m}$
Problem 6.- An 80 kg skydiver leaps out of an air balloon and quickly reaches a terminal speed of $110 \mathrm{~m} / \mathrm{s}$. Calculate the power delivered by air resistance.

Solution: If the skydiver reaches terminal velocity there is no more acceleration, so the weight is equal to the force of air resistance: $\mathrm{F}_{\text {air }}=\mathrm{mg}$. The power is $\mathrm{P}=\mathrm{Fv}$ so:

For a terminal velocity of $110 \mathrm{~m} / \mathrm{s}$:
$\mathrm{P}=\mathrm{mgv}=(80 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(110 \mathrm{~m} / \mathrm{s})=\mathbf{8 6 , 3 0 0} \mathbf{W}$
Problem 7.- A cyclist does work at 600 W while riding. How much force is applied on the bicycle if its speed is $8.0 \mathrm{~m} / \mathrm{s}$?

Solution: $P=F v \rightarrow F=\frac{600 \mathrm{~W}}{8 \mathrm{~m} / \mathrm{s}}=75 \mathrm{~N}$

