Physics I

Linear Momentum

Linear momentum (non-relativistic) $\vec{p}=m \vec{v}$
Newton's second law in terms of momentum: $\vec{F}=\frac{\Delta \vec{p}}{t}$
Impulse, change in momentum: $\Delta \vec{p}=\int \vec{F} d t$
Problem 1.- In playing a "drop shot" a tennis ball that had an initial velocity of $22 \mathrm{~m} / \mathrm{s}$ horizontally is returned at an angle of 45° above the horizontal with a speed of $7 \mathrm{~m} / \mathrm{s}$. Calculate the average force on the ball if its mass is 0.057 kg and the contact with the racket lasted 7.5 ms .

Solution: We find the change in momentum and divide by the time to get the force:
Before the ball was hit:
$\vec{p}_{\text {before }}=m \vec{v}_{1}=0.057(22,0)$
After the ball was hit:
$\vec{p}_{\text {after }}=m \vec{v}_{2}=0.057\left(-7 \cos 45^{\circ}, 7 \sin 45^{\circ}\right)$

The change in momentum is:
$\Delta \vec{p}=0.057\left(-7 \cos 45^{\circ}, 7 \sin 45^{\circ}\right)-0.057(22,0)$
The force is:
$\vec{F}=\frac{\Delta \vec{p}}{\text { time }}=\frac{0.057\left(-7 \cos 45^{\circ}, 7 \sin 45^{\circ}\right)-0.057(22,0)}{7.5 \times 10^{-3}}=(-205,38) \mathrm{N}$
Problem 1a.- In playing a "drop shot" a tennis ball than had an initial velocity of $\mathrm{v}_{1}=23 \mathrm{~m} / \mathrm{s}$ horizontally is returned also horizontally with a speed of only $\mathrm{v}_{2}=2 \mathrm{~m} / \mathrm{s}$. Calculate the average force on the ball if its mass is 0.057 kg and the contact with the racket lasted 7.5 ms .

Solution: Like in the previous problem, we find the change in momentum and divide by the time to get the force:

Before the ball was hit:
$\vec{p}_{\text {before }}=m \vec{v}_{1}=0.057(23,0)$

After the ball was hit:

$$
\vec{p}_{\text {affer }}=m \vec{v}_{2}=0.057(-2,0)
$$

The change in momentum is: $\Delta \vec{p}=0.057(-2,0)-0.057(24,0)$
The force is:
$\vec{F}=\frac{\Delta \vec{p}}{\text { time }}=\frac{0.057(-2,0)-0.057(24,0)}{7.5 \times 10^{-3}}=(-198,0) \mathrm{N}$

Problem 2.- A constant 18 N force acts on a $12-\mathrm{kg}$ object for 3.5 s . What is the object's change in velocity?

Solution: Using Newton's second law:
$F=\frac{\Delta p}{t}=\frac{m \Delta v}{t} \rightarrow \Delta v=\frac{F t}{m}=\frac{18 N(3.5 s)}{12 k g}=\mathbf{5 . 2 5} \mathbf{~ m} / \mathrm{s}$
Problem 2a.- A horizontal force of 230 N is applied to move a $66-\mathrm{kg}$ cart, initially at rest, across a 13 m level surface. What is the final speed of the cart? Ignore friction in this problem.

Solution: If we ignore friction, all the work done on the cart is converted into kinetic energy, giving:
$W=F d \cos \theta=\frac{1}{2} m v^{2} \rightarrow v=\sqrt{\frac{2 F d \cos \theta}{m}}=\sqrt{\frac{2(230 \mathrm{~N})(13 \mathrm{~m}) \cos 0^{\circ}}{66 \mathrm{~kg}}}=\mathbf{9 . 5 m} / \mathbf{s}$

Problem 3.- Calculate the average force that a club imparts on a golf ball if it is hit off the tee with a speed of $45 \mathrm{~m} / \mathrm{s}$ and the time they are in contact is 2.5 ms . Take the mass of the golf ball as 0.046 kg .

Solution: Using Newton's second law:
$F=\frac{\Delta p}{t}=\frac{0.046 \mathrm{~kg}(45 \mathrm{~m} / \mathrm{s})}{2.5 \times 10^{-3} \mathrm{~s}}=\mathbf{8 2 8} \mathbf{N}$

Problem 3a.- A golf ball of mass 45.9 g is hit by a club in a collision that lasts 1.5 ms . Estimate the force applied on the ball if it traveled 275 m horizontally and its initial velocity was at 45° above the horizontal. Ignore air resistance.

Solution: First, we find the initial velocity of the golf ball (after being hit by the club) using the range equation:
$R=\frac{v_{o}^{2} \sin (2 \theta)}{g} \rightarrow v_{o}=\sqrt{\frac{R g}{\sin (2 \theta)}}$
For a range of $275 \mathrm{~m}: v_{o}=\sqrt{\frac{275 \mathrm{~m}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{\sin \left(2 \times 45^{\circ}\right)}}=51.9 \mathrm{~m} / \mathrm{s}$

Knowing the velocity after being hit by the club allows us to find the change in momentum:
$\Delta p=m v_{o}$ and estimate the force using Newton's second law: $F=\frac{\Delta p}{t}=\frac{m v_{o}}{t}$.
$F=\frac{0.0458 \mathrm{~kg}(51.9 \mathrm{~m} / \mathrm{s})}{1.5 \times 10^{-3} \mathrm{~s}}=\mathbf{1 , 5 8 0} \mathbf{N}$

Problem 4.- A 1.5 kg hammer with an initial velocity of $1.2 \mathrm{~m} / \mathrm{s}$ hits a nail and slows down to rest in 0.012 s . Calculate the average force that the hammer applies on the nail.

Solution: Using Newton's original second law:
$F=\frac{\Delta p}{t}=\frac{1.5 \mathrm{~kg}(1.2 \mathrm{~m} / \mathrm{s})}{0.012 \mathrm{~s}}=\mathbf{1 5 0} \mathbf{N}$
Problem 5.- A baseball that had an initial horizontal velocity of $30 \mathrm{~m} / \mathrm{s}$ is hit straight up with a velocity of $16 \mathrm{~m} / \mathrm{s}$. Calculate the average force exerted by the bat on the ball if the mass of the ball is 0.140 kg and the time of contact was 5 ms .
Answer with the magnitude of the force.

Solution: The plan is to calculate the change in momentum $\Delta \vec{p}$ and divide it by the time to get the force.

After the hit the momentum is $\vec{p}_{\text {affer }}=\left(0, m v_{\text {affer }}\right)=(0,0.140 \times 16)=(0,2.24)$

Before the hit the momentum is $\vec{p}_{\text {before }}=\left(m v_{\text {before }}, 0\right)=(0.140 \times 30,0)=(4.2,0)$

To find the difference: $\Delta \vec{p}=\vec{p}_{\text {after }}-\vec{p}_{\text {before }}=(-4.2,2.24)$
And to find the force: $\vec{F}=\frac{\Delta p}{t}=\frac{(-4.2,2.24)}{5 \times 10^{-3}}=(-840 \mathrm{~N}, 448 \mathrm{~N})$

The magnitude is: $F=\sqrt{840^{2}+448^{2}}=\mathbf{9 5 2} \mathbf{N}$

