Physics I

Centripetal Acceleration

Problem 1.- A Formula 1 car accelerates uniformly from rest to a speed $\mathrm{v}_{2}=200 \mathrm{~km} / \mathrm{h}$ by following a semicircle of radius $\mathrm{R}=350 \mathrm{~m}$. Calculate its centripetal and tangential accelerations in the middle of the curve.

Problem 1b.- A Formula 1 car accelerates uniformly from rest to a speed of $\mathrm{v}_{2}=180 \mathrm{~km} / \mathrm{h}$ by following a semicircle of radius $\mathrm{R}=280 \mathrm{~m}$. Calculate its centripetal and tangential accelerations when the car reaches point P , which is 45° from the initial point.

Problem 2.- A car travels with constant speed on a circular road on level ground. In the diagram below, $\mathbf{F}_{\text {air }}$ is the force of air resistance on the car. Which of the other forces shown best represents the horizontal force of the road on the car's tires? Give a short rationale of your answer.
(A) \mathbf{F}_{A}
(B) F_{B}
(C) F_{C}
(D) F_{D}
(E) \mathbf{F}_{E}

Problem 3.- Find the centripetal acceleration (radial acceleration) of a person standing on the Earth equator. Consider the radius of the Earth to be $6.4 \times 10^{6} \mathrm{~m}$ and the period of rotation to be 1 day $\left[8.6 \times 10^{4} \mathrm{~s}\right]$.

Problem 3a.- Find the period that would make the centripetal acceleration (radial acceleration) of a person standing on the Earth equator equal to " g ". Consider the radius of the Earth to be $6.4 \times 10^{6} \mathrm{~m}$.

Notice that if the day had this period instead of 24 hours, we would feel weightless at the equator.

Problem 4.- The speed of a particle moving in a circle of radius $\mathrm{R}=8 \mathrm{~m}$ is given by $\mathrm{v}=5 \mathrm{t}^{2}+2 \mathrm{t}$. Where v is in m / s and t is in seconds. Find the total acceleration of the particle at $\mathrm{t}=1 \mathrm{~s}$

Problem 4a.- A particle is constrained to move in a circle with a 12 -meter radius. At one instant, the particle's speed is 6 meters per second and is increasing at a rate of 4 meters per second squared. What is the magnitude of the total acceleration at that instant?

Problem 5.- Find the centripetal acceleration (radial acceleration) of a pilot pulling out of dive at $550 \mathrm{~m} / \mathrm{s}$ by following a circular trajectory of 8 km radius.

Problem 5a.- Find the minimum radius of a circular trajectory of a pilot pulling out of dive at $450 \mathrm{~m} / \mathrm{s}$ if the centripetal acceleration should not exceed 3.5 " g "s.

Problem 6.- A clinical centrifuge reaches 7035 rpm in 28 seconds. Calculate the angular acceleration in rad $/ \mathrm{s}^{2}$ assuming it is constant. With this value calculate the tangential acceleration of a blood sample located at $\mathrm{R}=0.12 \mathrm{~m}$.

Problem 6a.- In the problem above, find the centripetal acceleration of the blood sample when the centrifuge reaches 7035 rpm .

Problem 7.- A modern centaur (a biker and his motorcycle) has a mass of 230 kg . He goes around a 35 m radius turn at $95 \mathrm{~km} / \mathrm{h}$. Find the centripetal force.

Problem 8.- The radius of a curve in the highway is 220 m . What is the maximum possible speed of a vehicle rounding the curve if the centripetal acceleration should not exceed $3.5 \mathrm{~m} / \mathrm{s}^{2}$? Give your answer in miles per hour. [1 mile $=1609 \mathrm{~m}$].

Problem 8a.- What should be the radius of a curve in a highway if the centripetal acceleration should not exceed $3.5 \mathrm{~m} / \mathrm{s}^{2}$ for a car driving at 65 miles $/ \mathrm{hour}$? [$1 \mathrm{mile}=1609 \mathrm{~m}$]

Problem 9.- An object slides without friction on the path shown below.

Its speed is given by the equation:

$$
v=\sqrt{2 g\left(h_{A}-y\right)} \quad h_{A}=3 R
$$

a) The magnitude of its acceleration is $a=\frac{g}{2} \sqrt{39}$ when its vertical position is $3 / 2 \mathrm{R}$ when going up inside the loop. Determine the tangential and radial acceleration vectors at that point.
b) Find the acceleration at the vertical position $3 \mathrm{R} / 2$, inside the loop, but going down.
c) Indicate at what position A, B or C the radial acceleration is maximum and minimum.
d) Indicate and justify at what position, B or C, the tangential acceleration is largest.

Problem 10.- Are the people inside a space station in orbit around the Earth in equilibrium?
Problem 11.- A 2.45 kg ball is attached to a rotating pole by two identical massless strings, each of length 1.50 m . The strings are tied to the pole separated by a distance $\mathrm{d}=1.80 \mathrm{~m}$. The tension in the lower string is 10.0 N . Calculate:
(a) The tension in the upper string.
(b) The net force on the ball.
(c) The speed of the ball.

