Physics I

Rolling

Problem 1.- An accidentally loosen concrete pipe in a construction site rolls toward you at $8.3 \mathrm{~m} / \mathrm{s}$ on a level surface. To protect your life, you run up an incline. How far up do you need to go to be safe?
The moment of inertia of a pipe is MR^{2}

Problem 1a.- A giant spherical ball rolls toward you at $5 \mathrm{~m} / \mathrm{s}$ on a level surface. In order to protect your life, you run up an incline. How far up do you need to go to be safe?
Suggestion: use conservation of energy. The snowball will stop when all its kinetic energy, rotational and linear, is converted to potential energy.
The moment of inertia of a sphere is $\frac{2}{5} \mathrm{MR}^{2}$

Problem 2.- A hoop rolls down an incline without slipping. Find its linear velocity after falling $\mathrm{h}=9.8 \mathrm{~m}$ vertically. Assume its initial velocity was zero.
The moment of inertia of a hoop about its center is MR^{2}.

Problem 2a.- A solid cylinder rolls down an incline without slipping. Find its linear velocity after falling $\mathrm{h}=9.8 \mathrm{~m}$ vertically. Assume its initial velocity was zero.
The moment of inertia of a cylinder about its center is $1 / 2 \mathrm{MR}^{2}$.

Problem 2b.- Lombard Street in San Francisco, California has a section that has a steep slope. Calculate the velocity of a hoop rolling down the incline after falling 5 m vertically. Assume the hoop started from rest. Moment of inertia of a hoop is MR ${ }^{2}$.

Problem 3.- If a sphere and a solid cylinder roll down a slope, which one accelerates faster?
Problem 3a.- What about a hollow cylinder and a solid one? Which one will accelerate faster when rolling down a slope?

Problem 4.- An Atwood machine is made with two masses $\mathrm{M}_{1}=10 \mathrm{~kg}$ and $\mathrm{M}_{2}=11 \mathrm{~kg}$. The pulley has a mass of 2 kg , and it has a shape approximately the same as a disk.
Calculate how long it will take mass M_{2} to fall 1 m starting from rest.
The moment of inertia of a disk about its center is $1 / 2 \mathrm{MR}^{2}$.

