Physics I

Torque

Torque: $\tau=F r \sin \angle_{F}^{r}$
Newton's second law for a rotating system: $\tau=I \alpha$
Problem 1.- Consider a spherical satellite of mass $5,500 \mathrm{~kg}$ and radius 2.5 m
Assume the mass of the satellite is uniformly distributed over the volume, so its moment of inertia is $\frac{2}{5} m R^{2}$
Two small rockets on the sides apply steady forces of 25 N each to spin the satellite. Calculate how long we need to run the rockets to reach an angular velocity of 18 rpm .

Problem 1a.- Consider a spherical satellite of 2.4 m radius, whose mass is uniformly distributes close to its surface, so it can be modeled as a hollow sphere.
Two small rockets are turned on for 5 minutes and apply 15 N each to make the satellite rotate from rest to 18 rpm . Calculate the mass of the satellite. Ignore the mass lost by the rockets.

Problem 2.- What should be the force F if the torque about the center of the nut should be 25 Nm?

Problem 3.- A ballplayer swings the bat reaching an angular velocity of 3.5rev/s in a time of 0.18 s . Approximate the bat as a uniform rod of mass 2.6 kg and length 1.05 m and calculate the torque applied by the athlete.
Moment of inertia of a rod rotating about one end is $\quad I=\frac{1}{3} m L^{2}$
Problem 4.- In the Atwood machine shown in the figure $\mathrm{m}_{1}=10 \mathrm{~kg}$ and $\mathrm{m}_{2}=9 \mathrm{~kg}$ and the mass of the pulley is 2 kg . Approximate the pulley as a disk ($I=\frac{1}{2} m R^{2}$). Ignore friction in the axis of the pulley. Find how long it will take for m_{1} to hit the ground if you release the masses with zero initial velocity.

Problem 5.- Consider a mechanical piece built by joining a 2 m long bar of negligible mass and a square plate of 2 m side and mass 4 kg . The piece is released from rest from the position shown below and it rotates freely around A. Calculate the velocity of point B when it passes the vertical line below A.

Problem 5a.- Consider a mechanical piece in the shape of an L, built by joining two identical thin 20 cm long bars AB and BC . The piece is released from rest from the position shown below and it rotates freely around A. Calculate the velocity of point B when it passes the vertical line below A .

