Physics I

Buoyancy

$$
F_{\text {buovancy }}=\rho_{\text {fluid }} g \text { Volume }_{\text {under surface }} \quad \text { Buoyancy force }
$$

Problem 1.- A piece of cork of volume $0.000015 \mathrm{~m}^{3}$ and density $120 \mathrm{~kg} / \mathrm{m}^{3}$ is floating on water. How much lead do you need to tie to the cube to sink it?
Density of lead is $11,300 \mathrm{~kg} / \mathrm{m}^{3}$

Problem 2.- You and your diving gear have a total mass of 110 kg and a volume of $0.115 \mathrm{~m}^{3}$. How much lead (mass) do you need to carry in your belt to sink in seawater?
Take the density of seawater as $1,025 \mathrm{~kg} / \mathrm{m}^{3}$
Density of lead is $11,300 \mathrm{~kg} / \mathrm{m}^{3}$

Problem 3.- Do ice cubes float higher or lower in an alcoholic drink (compared to pure water)? Why?
[$\rho_{\text {alcohol }}=0.8 \mathrm{~g} / \mathrm{cm}^{3} \quad \rho_{\text {ice }}=0.9 \mathrm{~g} / \mathrm{cm}^{3} \quad \rho_{\text {water }}=1 \mathrm{~g} / \mathrm{cm}^{3}$]
Problem 4.- What fraction of a block of wood (density $=800 \mathrm{~kg} / \mathrm{m}^{3}$) will be under the surface of mercury (density $=13,600 \mathrm{~kg} / \mathrm{m}^{3}$) when floating?

Problem 5.- The water of a very salty lake has a density of $1,220 \mathrm{~kg} / \mathrm{m} 3$. Consider a $75-\mathrm{kg}$ person floating in the lake. How much of her volume will be under the surface of the water?

Problem 6.-

a) What is the buoyancy force due to air acting on a ping-pong ball of radius 20 mm if the density of air is $1.29 \mathrm{~kg} / \mathrm{m}^{3}$?
The volume of a sphere is $\frac{4 \pi R^{3}}{3}$
b) What fraction of its weight is the buoyancy force?

The mass of a ping-pong ball is 0.0027 kg

