Physics I

Buoyancy

 $F_{buoyancy} = \rho_{fluid} gVolume_{under surface}$ Buoyancy force

Problem 1.- A piece of cork of volume $0.000015m^3$ and density $120kg/m^3$ is floating on water. How much lead do you need to tie to the cube to sink it? Density of lead is $11,300kg/m^3$

Problem 2.- You and your diving gear have a total mass of 110kg and a volume of $0.115m^3$. How much lead (mass) do you need to carry in your belt to sink in seawater?

Take the density of seawater as 1,025 kg/m³ Density of lead is 11,300 kg/m³

Problem 3.- Do ice cubes float higher or lower in an alcoholic drink (compared to pure water)? Why?

 $[\rho_{alcohol} = 0.8g/cm^3 \qquad \rho_{ice} = 0.9g/cm^3 \qquad \rho_{water} = 1g/cm^3]$

Problem 4.- What fraction of a block of wood (density= 800kg/m^3) will be under the surface of mercury (density = $13,600 \text{ kg/m}^3$) when floating?

Problem 5.- The water of a very salty lake has a density of 1,220 kg/m3. Consider a 75-kg person floating in the lake. How much of her volume will be under the surface of the water?

Problem 6.-

a) What is the buoyancy force due to air acting on a ping-pong ball of radius 20mm if the density of air is 1.29kg/m³?

The volume of a sphere is $\frac{4\pi R^3}{3}$

b) What fraction of its weight is the buoyancy force? The mass of a ping-pong ball is 0.0027kg