Physics I

Pressure and Density

Pressure = $\frac{\text{Force}}{\text{Area}}$ Definition of pressure. Measured in pascal (Pa) in SI units. $1 \text{atm} = 1.013 \times 10^5 \text{ Pa.}$ $\Delta P = \rho \text{gh}$ Hydrostatic pressure at a depth h.

Problem 1.- Estimate the pressure at the center of the Earth by integrating the hydrostatic equation ($\Delta P = \rho gh$) written in differential form:

 $dP = \rho g dh$

So the integral will be:

$$P = \int_{0}^{R} \rho g dh$$

The limits of integration are from the center of the Earth (h = 0) to the surface (h = R). Where $R = 6.37 \times 10^6$ m is the radius of the Earth.

Take the density as a constant: $\rho = 5{,}500 \frac{\text{kg}}{\text{m}^3}$. Take g to be this function: $g = 9.8 \frac{\text{m}}{\text{s}^2} \frac{h}{R}$. **Problem 2.-** How high would be the level in a barometer at normal atmospheric pressure if the fluid used were vodka martini (shaken not stirred) of density 910 kg/m³? Would it be a practical instrument (why or why not)?

Problem 3.-

a) Which has more volume: a kilogram of aluminum or a kilogram of gold?

b) Aerogel is a new material with very special properties. The silicon variety has a density of only $\rho = 1.1 \text{ mg/cm}^3$. Calculate the mass in grams of a 1.5-liter sample.

1 L=1000cm³

Problem 4.- A precise barometer is used to measure the height of a building. It gives a change in pressure of 172 pascal between the top and the bottom of the building shown in the figure. Assume the density of air is constant and equal to 1.25kg/m³ to find "h".

Problem 5.- If the density of air were constant 1.29kg/m³ how high would be the atmosphere?

Problem 6.- A syrup tank springs a leak through a hole located 4.5m under the surface of the fluid. The area of the hole is $0.0035m^2$. If you plug the hole with a rubber stopper, how much force must the rubber apply to stop the leak? [$\rho_{syrup} = 1,150 \text{ kg/m}^3$]

Problem 7.- Estimate the atmospheric pressure at an altitude H=140 meters over sea level, knowing that the pressure at sea level is 1.013×10^5 pascal.

In your estimation assume the density of air to be constant $\rho_{air} = 1.29 \text{kg}/\text{m}^3$.

Problem 8.- Knowing that atmospheric pressure follows approximately the equation:

 $P = 760e^{-h/8010}$

Where P is in torr and h is in meters. Calculate the height necessary to reach a pressure of 1 torr.

Problem 9.- Calculate the pressure at the bottom of the Dead Sea, given that its depth is 330 m, the density of its salty water is 1230 kg/m^3 and the atmospheric pressure at the surface is 1.067×10^5 Pa.

Problem 9a.- Calculate the pressure at the bottom of Lake Erie, whose depth is 64m. Assume the density of the water is $1,010 \text{ kg/m}^3$ and the atmospheric pressure at the surface is 1.033×10^5 Pa.

Problem 10.- Calculate the net force acting on a submarine window if the water depth is 200m and the area of the window is 0.025 m^2 . Consider the pressure inside the submarine to be 1 atm. Take the density of seawater as $1,025 \text{ kg/m}^3$

Problem 11.- The gauge pressure in each of the four tires of an SUV is 28psi. Calculate the mass of the car if the "footprint" of each tire is $0.025m^2$.

Problem 12.- To answer the two questions that follow take the density of gold and alcohol to be:

 $\rho_{Au}=19,300 kg/m^3 \qquad \qquad \rho_{alcohol}=800 kg/m^3$

a) What is the volume of 1kg of alcohol?

b) What is the mass of 0.15 m³ of gold?

Problem 13.- What is the difference in blood pressure between the feet and brain of a standing 1.8m-tall person? Approximate blood density to that of water.