Physics I

Pressure and Density

$$
\begin{array}{cl}
\text { Pressure }=\frac{\text { Force }}{\text { Area }} & \begin{array}{l}
\text { Definition of pressure. Measured in pascal }(\mathrm{Pa}) \text { in SI units. } \\
\\
\Delta \mathrm{P}=\rho \mathrm{atm}=1.013 \times 10^{5} \mathrm{~Pa} . \\
\end{array} \\
\text { Hydrostatic pressure at a depth } \mathrm{h} .
\end{array}
$$

Problem 1.- Estimate the pressure at the center of the Earth by integrating the hydrostatic equation ($\Delta P=\rho g h$) written in differential form:

$$
d P=\rho g d h
$$

So the integral will be:
$P=\int_{0}^{R} \rho g d h$

The limits of integration are from the center of the Earth $(h=0)$ to the surface $(h=R)$.
Where $R=6.37 \times 10^{6} \mathrm{~m}$ is the radius of the Earth.
Take the density as a constant: $\rho=5,500 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$.
Take g to be this function: $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \frac{h}{R}$.

Problem 2.- How high would be the level in a barometer at normal atmospheric pressure if the fluid used were vodka martini (shaken not stirred) of density $910 \mathrm{~kg} / \mathrm{m}^{3}$? Would it be a practical instrument (why or why not)?

Problem 3.-

a) Which has more volume: a kilogram of aluminum or a kilogram of gold?
b) Aerogel is a new material with very special properties. The silicon variety has a density of only $\rho=1.1 \mathrm{mg} / \mathrm{cm}^{3}$. Calculate the mass in grams of a 1.5 -liter sample.
$1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$

Problem 4.- A precise barometer is used to measure the height of a building. It gives a change in pressure of 172 pascal between the top and the bottom of the building shown in the figure. Assume the density of air is constant and equal to $1.25 \mathrm{~kg} / \mathrm{m}^{3}$ to find " h ".

Problem 5.- If the density of air were constant $1.29 \mathrm{~kg} / \mathrm{m}^{3}$ how high would be the atmosphere?
Problem 6.- A syrup tank springs a leak through a hole located 4.5 m under the surface of the fluid. The area of the hole is $0.0035 \mathrm{~m}^{2}$. If you plug the hole with a rubber stopper, how much force must the rubber apply to stop the leak? $\left[\rho_{\text {syrup }}=1,150 \mathrm{~kg} / \mathrm{m}^{3}\right.$]

Problem 7.- Estimate the atmospheric pressure at an altitude $\mathrm{H}=140$ meters over sea level, knowing that the pressure at sea level is 1.013×10^{5} pascal.
In your estimation assume the density of air to be constant $\rho_{\text {air }}=1.29 \mathrm{~kg} / \mathrm{m}^{3}$.

Problem 8.- Knowing that atmospheric pressure follows approximately the equation:

$$
\mathrm{P}=760 \mathrm{e}^{-\mathrm{h} / 8010}
$$

Where P is in torr and h is in meters. Calculate the height necessary to reach a pressure of 1 torr.
Problem 9.- Calculate the pressure at the bottom of the Dead Sea, given that its depth is 330 m , the density of its salty water is $1230 \mathrm{~kg} / \mathrm{m}^{3}$ and the atmospheric pressure at the surface is $1.067 \times 10^{5} \mathrm{~Pa}$.

Problem 9a.- Calculate the pressure at the bottom of Lake Erie, whose depth is 64 m . Assume the density of the water is $1,010 \mathrm{~kg} / \mathrm{m}^{3}$ and the atmospheric pressure at the surface is 1.033×10^{5} Pa.

Problem 10.- Calculate the net force acting on a submarine window if the water depth is 200 m and the area of the window is $0.025 \mathrm{~m}^{2}$. Consider the pressure inside the submarine to be 1 atm . Take the density of seawater as $1,025 \mathrm{~kg} / \mathrm{m}^{3}$

Problem 11.- The gauge pressure in each of the four tires of an SUV is 28psi. Calculate the mass of the car if the "footprint" of each tire is $0.025 \mathrm{~m}^{2}$.

Problem 12.- To answer the two questions that follow take the density of gold and alcohol to be:
$\rho_{\mathrm{Au}}=19,300 \mathrm{~kg} / \mathrm{m}^{3} \quad \rho_{\text {alcohol }}=800 \mathrm{~kg} / \mathrm{m}^{3}$
a) What is the volume of 1 kg of alcohol?
b) What is the mass of $0.15 \mathrm{~m}^{3}$ of gold?

Problem 13.- What is the difference in blood pressure between the feet and brain of a standing 1.8 m -tall person? Approximate blood density to that of water.

